Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



An approximate inertial manifolds approach
to postprocessing the Galerkin method
for the Navier-Stokes equations

Authors: Bosco García-Archilla, Julia Novo and Edriss S. Titi
Journal: Math. Comp. 68 (1999), 893-911
MSC (1991): Primary 65P25
Published electronically: February 19, 1999
MathSciNet review: 1627785
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a recent paper we have introduced a postprocessing procedure for the Galerkin method for dissipative evolution partial differential equations with periodic boundary conditions. The postprocessing technique uses approximate inertial manifolds to approximate the high modes (the small scale components) in the exact solutions in terms of the Galerkin approximations, which in this case play the role of the lower modes (large scale components). This procedure can be seen as a defect-correction technique. But contrary to standard procedures, the correction is computed only when the time evolution is completed. Here we extend these results to more realistic boundary conditions. Specifically, we study in detail the two-dimensional Navier-Stokes equations subject to homogeneous (nonslip) Dirichlet boundary conditions. We also discuss other equations, such as reaction-diffusion systems and the Cahn-Hilliard equations.

References [Enhancements On Off] (What's this?)

  • 1. S. Agmon, Lectures on Elliptic Boundary Value Problems. Mathematical Studies, Van Nostrand, Princeton, NJ, 1965. MR 31:2504
  • 2. A. Ait Ou Ammi and M. Marion, Nonlinear Galerkin methods and mixed finite elements: Two -grid algorithms for the Navier-Stokes equations, Numer. Math., 68, 1994, 189-213. MR 95c:65174
  • 3. R. E. Bank and D. J. Rose, Analysis of multilevel iterative methods for nonlinear finite element equations, Math. Comp., 39 , 1982, 453-465. MR 83j:65105
  • 4. P. F. Batcho and G. E. Karniadakis, Generalized Stokes Eigenfunctions: a new trial basis for the solution of incompressible Navier-Stokes equations, J. Comp. Phys., 115, 1994, 121-146. MR 95g:76037
  • 5. H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlin. Anal., 4, 1980, 677-681. MR 81i:35139
  • 6. P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, The University of Chicago, 1988. MR 90b:35190
  • 7. C. N. Dawson and M. F. Wheeler, Two-Grid methods for mixed Finite Element approximations of nonlinear parabolic equations, Contemporary Mathematics, 180, 1994 192-204. MR 95j:65117
  • 8. A. Debussche and M. Marion, On the construction of families of approximate inertial manifolds, J. Diff. Eq., 100, 1992, 173-201. MR 94e:35076
  • 9. C. Devulder and M. Marion, A class of numerical algorithms for large time integration: the nonlinear Galerkin method, SIAM J. Numer. Anal., 29, 1992, 462-483. MR 93d:65079
  • 10. C. Devulder, M. Marion and E. S. Titi, On the rate of convergence of Nonlinear Galerkin methods, Math. Comp., 60, 1993, 495-514. MR 93h:76017
  • 11. J. Douglas, Jr. and T. Dupont, A Galerkin method for a nonlinear Dirichlet problem, Math. Comp., 29, 1975, 698-696. MR 55:4742
  • 12. T. Dubois, F. Jauberteau, M. Marion and R. Temam, Subgrid modelling and interaction of small and Large wavelengths in turbulent flows, Comp. Phys. Comm., 65, 1991, 100-106. MR 92b:35123
  • 13. C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell and E. S. Titi, On the computation of inertial manifolds, Phys. Lett. A, 131, 1988, 433-436. MR 89k:65154
  • 14. C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two dimensional turbulent flows, RAIRO Math. Mod. Num. Anal., 22, 1988, 93-114. MR 89h:76022
  • 15. C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Diff. Eq., 73, 1988, 309-353. MR 89e:58020
  • 16. C. Foias, G. R. Sell and E. S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dynamics and Diff. Eq., 1, 1989, 199-243. MR 90k:35031
  • 17. C. Foias, R. Temam, Algebraic approximation of attractors: the finite dimensional case, Physica D, 32, 1988, 163-182. MR 89k:58161
  • 18. J. de Frutos, B. García-Archilla and J. Novo, A postprocessed Galerkin method with Chebyshev and Legendre polynomials, (submitted).
  • 19. B. García-Archilla, Some practical experience with the time integration of dissipative equations J. Comp. Phys., 122, 1995, 25-29. CMP 96:03
  • 20. B. García-Archilla and J. de Frutos, Time integration of the nonlinear Galerkin method, IMA J. Num. Anal., 14, 1994, 221-244. MR 96h:65121
  • 21. B. García-Archilla, J. Novo and E. S. Titi, Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds, SIAM J. Numer. Anal. 35, 1998, 941-972. CMP 98:11
  • 22. B. García-Archilla and E. S. Titi, Postprocessing Galerkin methods: The finite-element case, (submitted).
  • 23. J. Hale, Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs, 25, AMS, Providence, 1988. MR 89g:58059
  • 24. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag, Berlin, 1988. MR 83j:35084
  • 25. F. Jauberteau, C. Rosier and R. Temam, A nonlinear Galerkin method for the Navier-Stokes equations, Comput. Meth. Appl. Mech.Eng., 8, 1990, 245-260. MR 91k:76130
  • 26. M. S. Jolly, I. G. Kevrekidis, E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Physica D, 44, 1990, 38-60. MR 91f:35217
  • 27. M. S. Jolly, I. G. Kevrekidis, E. S. Titi, Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation, Jour. of Dynamics and Diff. Eq. , 3, 1991, 179-197. MR 92b:35165
  • 28. D. A. Jones, L. G. Margolin and E. S. Titi, On the effectiveness of the approximate inertial manifold -A computational study, Theor. Comp. Fluid Dynam., 7, 1995, 243-260.
  • 29. D. A. Jones and E. S. Titi, A remark on quasi-stationary approximate inertial manifolds for the 2D Navier-Stokes equations, SIAM J. Math. Anal., 25, 1994, 894-914. MR 95c:35173
  • 30. D. A. Jones and E. S. Titi, C$^1$ approximations of inertial manifolds for dissipative nonlinear equations, Jour. Diff. Equ., 127, 1996, 54-86. MR 97g:58154
  • 31. L. Mansfield, On the solution of nonlinear finite element systems, SIAM J. Numer. Anal., 17, 1980, 752-765. MR 82a:65090
  • 32. M. Marion and R. Temam, Nonlinear Galerkin Methods, SIAM J. Numer. Anal., 26, 1989, 1139-1157. MR 91a:65220
  • 33. M. Marion and R. Temam, Nonlinear Galerkin methods: The finite element case, Numer. Math., 57, 1990, 205-226. MR 92d:65200
  • 34. M. Marion and J. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid finite elements, SIAM J. Numer. Anal., 32, 1995, 1170-1184. MR 96f:65136
  • 35. J. Novo, Postproceso de Métodos espectrales. Ph. D. Thesis, Universidad de Valladolid, 1997.
  • 36. R. Rautmann, On the convergence rate of nonstationary Navier-Stokes approximations, Proceedings of IUTAM Sympos., Paderborn (Germany) 1979,Lecture Notes in Mathematics, 771, Springer -Verlag, Berlin, New York, 1980, 425-449. MR 81c:35106
  • 37. J. Shen, Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal., 38, 1990, 201-229. MR 93a:65130
  • 38. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer-Verlag, Berlin, 1988. MR 89m:58056
  • 39. R. Temam, Attractors for the Navier-Stokes equations: localization and approximation, J. Fac. Sci., Univ. of Tokyo, Sec. IA Math., 36, 1989, 629-647. MR 90m:58128
  • 40. R. Temam, Dynamical systems, turbulence and the numerical solution of the Navier Stokes equations, in Proceedings of the 11th International Conference on Numerical Methods in Fluid Dynamics (Williamsburg), eds. D. Dwoyer and R. Voigt, Lecture Notes in Physics, Springer-Verlag, Berlin, 1990, pp. 78-98. MR 90i:76055
  • 41. E. S. Titi, On approximate inertial manifolds to the Navier-Stokes equations, J. Math. Anal. Appl., 149, 1990, 540-557. MR 91j:35226
  • 42. R. Wallace and D. Sloan, Numerical solutions of a nonlinear dissipative system using a pseudospectral method and inertial manifolds, SIAM J. Sci. Comput., 16, 1995, 1049-1070. MR 97b:65136
  • 43. J. Xu, A novel two-grid method for semi-linear elliptic equations, SIAM J. Sci. Comput., 15, 1994, 231-237. MR 94m:65178
  • 44. J. Xu, Two-grid discretization techniques for linear and nonlinear problems, SIAM J. Numer. Anal., 33, 1996, 1759-1777. MR 97i:65169

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65P25

Retrieve articles in all journals with MSC (1991): 65P25

Additional Information

Bosco García-Archilla
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Julia Novo
Affiliation: Departamento de Matemática Aplicada y Computación, Universidad de Valladolid, Valladolid, Spain

Edriss S. Titi
Affiliation: Department of Mathematics and Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697-3875, USA
Email: etiti@math.uci-edu

Keywords: Dissipative equations, spectral methods, approximate inertial manifolds, nonlinear Galerkin methods
Received by editor(s): June 19, 1996
Received by editor(s) in revised form: February 9, 1998
Published electronically: February 19, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society