Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Explicit error bounds
in a conforming finite element method


Authors: Philippe Destuynder and Brigitte Métivet
Journal: Math. Comp. 68 (1999), 1379-1396
MSC (1991): Primary 65N30, 65R20, 73C50
DOI: https://doi.org/10.1090/S0025-5718-99-01093-5
Published electronically: February 24, 1999
MathSciNet review: 1648383
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The goal of this paper is to define a procedure for bounding the error in a conforming finite element method. The new point is that this upper bound is fully explicit and can be computed locally. Numerical tests prove the efficiency of the method. It is presented here for the case of the Poisson equation and a first order finite element approximation.


References [Enhancements On Off] (What's this?)

  • 1. M. Ainsworth and J. T. Oden [1993], A unified approach to a posteriori error estimation using element residual methods, Numer. Math. 65, 23-50. MR 95a:65185
  • 2. R. Arcangéli and J. L. Gout [1976], Sur l'évaluation de l'erreur d'interpolation de Lagrange dans un ouvert de ${\mathbb R}^n$, Rev. Française Automat. Inform. Rech. Opér. Sér. Rouge Anal. Numér. 10, 5-27. MR 58:29586 (preprint)
  • 3. D. Arnold, J. Douglas, and C. P. Gupta [1984], A family of higher order mixed finite element methods for plane elasticity, Numer. Math. 45, 1-22. MR 86a:65112
  • 4. I. Babu\v{s}ka and W. C. Rheinboldt [1978], Error estimates for adaptive finite element computation, SIAM J. Numer. Anal. 15, 736-754. MR 58:3400
  • 5. I. Babu\v{s}ka and R. Rodriguez [1993], The problem of the selection of an a posteriori error indicator based on smoothing techniques, Internat. Numer. Methods Engrg. 36, 539-567. MR 93k:65089
  • 6. R. E. Bank and A. Weiser [1985], Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44, 283-301. MR 86g:65207
  • 7. C. Bernardi, B Métivet and R. Verfürth [1993], Analyse numérique d'indicateurs d'erreur, note EDF-M172/93062.
  • 8. P. G. Ciarlet [1978], The finite element method for elliptic problems, North-Holland, Amsterdam. MR 58:25001
  • 9. M. Collot [1998], Analysis and implementation of explicit error bounds for finite element methods; Static and dynamic aspects, CNAM, Paris.
  • 10. Ph. Destuynder and B. Métivet [1998], Explicit error bounds for a non-conforming finite element method, Finite Element Methods (Jyväskylä, 1997), Lecture Notes Pure Appl. Math., vol. 196, Marcel Dekker, New York, 1998, pp. 95-111. CMP 98:08
  • 11. - [1996a], Estimation de l'erreur explicite pour une méthode d'éléments finis non conformes, C. R. Acad. Sci. Paris Sér. I. Math. 322, 1081-1086. MR 97e:65110
  • 12. - [1996b], Estimation de l'erreur explicite pour une méthode d'éléments finis conformes, C. R. Acad. Sci. Paris Sér. I. Math. 323, 679-684. MR 97h:65138
  • 13. Ph. Destuynder, M. Collot, and M. Salaün [1997], A mathematical framework for the P. Ladevèze a posteriori error bounds in finite element methods, New Advances in Adaptive Computational Methods in Mechanics (T. Oden and P. Ladevèze, eds.), Elsevier, Amsterdam. (to appear)
  • 14. K. Eriksson and C. Johnson [1988], An adaptive finite element method for linear elliptic problems, Math. Comp. 50 361-383. MR 89c:65119
  • 15. L. Gallimard, P. Ladeveze, and J. P. Pelle [1995], La méthode des erreurs en relation de comportement appliquée au contrôle des calculs non linéaires. École CEA EDF-INRIA. Cours du 18-21 septembre 1995 sur le calcul d'erreur a posteriori et adaptation de maillage.
  • 16. V. Girault and P. A. Raviart [1986], Finite element methods for Navier-Stokes equations. Theory and algorithms, Springer-Verlag, Berlin. MR 88b:65129
  • 17. P. Ladevèze [1975], Comparaison de modèles de mécanique des milieux continus. Thèse d'état, Université Paris VI, Paris.
  • 18. P. Ladevèze and D. Leguillon [1983], Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20, 485-509. MR 84g:65150
  • 19. J. T. Oden, L. Demkowicz, W. Rachowicz, and T. A. Westermann [1989], Toward a universal $h$-$p$ adaptive finite element strategy. Part 2. A posteriori error estimation. Comp. Methods Appl. Mech. Engrg. 77, 113-180. MR 91b:65123b
  • 20. W. Prager and J. L. Synge [1947], Approximations in elasticity based on the concept of function space, Quart. Appl. Math. 5, 241-269. MR 10:81b
  • 21. P. A. Raviart and J. M. Thomas [1975], A mixed finite element method for second order elliptic problems, Mathematical Aspects of Finite Element Methods (Proc. Conf., C.N.R., Rome, 1975) Lecture Notes in Math., vol. 60b, Springer-Verlag, Berlin, 1977, pp. 292-315. MR 58:3547
  • 22. - [1983], Introduction à l'analyse numérique des équations aux dérivées partielles, Masson, Paris. MR 87a:65001a
  • 23. J. E. Roberts and J. M. Thomas [1987], Mixed and hybrid finite element methods, Rapport INRIA n$^\circ$737.
  • 24. A. H. Schatz, L. H. Sloan, and L. B. Wahlbin [1996], Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal. 33, 505-521. MR 98f:65112
  • 25. R. Verfürth [1994], A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math. 50, 67-83. MR 95c:65171
  • 26. O. C. Zienkiewicz and J. Z. Zhu [1987], A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg. 24, 337-357. MR 87m:73055
  • 27. - [1992], The super convergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Internat. J. Numer. Methods Engrg. 33 1331-1364. MR 93c:73098

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65N30, 65R20, 73C50

Retrieve articles in all journals with MSC (1991): 65N30, 65R20, 73C50


Additional Information

Philippe Destuynder
Affiliation: CNAM/IAT, 15 rue Marat, 78210 Saint-Cyr-L’École, France
Email: destuynd@cnam.fr

Brigitte Métivet
Affiliation: 1 avenue du Général de Gaulle, 92141 Clamart, France
Email: brigitte.metivet@der.edfgdf.fr

DOI: https://doi.org/10.1090/S0025-5718-99-01093-5
Received by editor(s): June 5, 1996
Received by editor(s) in revised form: February 19, 1998
Published electronically: February 24, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society