IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The second largest prime divisor
of an odd perfect number
exceeds ten thousand


Author: Douglas E. Iannucci
Journal: Math. Comp. 68 (1999), 1749-1760
MSC (1991): Primary 11A25, 11Y70
DOI: https://doi.org/10.1090/S0025-5718-99-01126-6
Published electronically: May 17, 1999
MathSciNet review: 1651761
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\sigma(n)$ denote the sum of positive divisors of the natural number $n$. Such a number is said to be perfect if $\sigma(n)=2n$. It is well known that a number is even and perfect if and only if it has the form $2^{p-1} (2^p-1)$ where $2^p-1$ is prime.

No odd perfect numbers are known, nor has any proof of their nonexistence ever been given. In the meantime, much work has been done in establishing conditions necessary for their existence. One class of necessary conditions would be lower bounds for the distinct prime divisors of an odd perfect number.

For example, Cohen and Hagis have shown that the largest prime divisor of an odd perfect number must exceed $10^6$, and Hagis showed that the second largest must exceed $10^3$. In this paper, we improve the latter bound. In particular, we prove the statement in the title of this paper.


References [Enhancements On Off] (What's this?)

  • 1. L. Adleman, C. Pomerance, and R. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. (2) 117 (1973), 173-206. MR 84e:10008
  • 2. A. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math. 5 IV (1886), 70-80, 130-137.
  • 3. M. Brandstein, New lower bound for a factor of an odd perfect number, #82T-10-240, Abstracts Amer. Math. Soc. 3 (1982), 257.
  • 4. R. Brent, G. Cohen, and H. teRiele, Improved techniques for lower bounds for odd perfect numbers, Math. Comp. 57 (1991), 857-868. MR 92c:11004
  • 5. E. Chein, An odd perfect number has at least 8 prime factors, Ph.D. Thesis, Pennsylvania State University (1979).
  • 6. G. Cohen, On the largest component of an odd perfect number, J. Austral. Math. Soc., Ser. A 42 (1987), 280-286. MR 87m:11005
  • 7. J. Condict, On an odd perfect number's largest prime divisor, Senior Thesis, Middlebury College (1978).
  • 8. I. Grad\v{s}tein, O. Ne\v{c}etnych sover\v{s}ennych \v{c}islah, Mat. Sb. 32 (1925), 476-510.
  • 9. P. Hagis, Outline of a proof that every odd perfect number has at least eight prime factors, Math. Comp. 35 (1980), 1027-1032. MR 81k:10004
  • 10. P. Hagis, On the second largest prime divisor of an odd perfect number, Analytic Number Theory, Lecture Notes in Mathematics, vol. 899, Springer-Verlag, Berlin and New York, 1981, pp. 254-263. MR 83i:10004
  • 11. P. Hagis and G. Cohen, Every odd perfect number has a prime factor which exceeds $10^6$, Math. Comp. 67 (1998), 1323-1330. MR 98k:11002
  • 12. P. Hagis and W. McDaniel, On the largest prime divisor of an odd perfect number, Math. Comp. 27 (1973), 955-957. MR 48:3855
  • 13. P. Hagis and W. McDaniel, On the largest prime divisor of an odd perfect number II., Math. Comp. 29 (1975), 922-924. MR 51:8021
  • 14. D. Iannucci, On the third largest prime divisor of an odd perfect number, Doctoral Dissertation, Temple University (1995).
  • 15. H.-J. Kanold, Folgerungen aus dem Vorkommen einer Gaußchen Primzahl in der Primfaktorenzerlegung einer ungeraden vollkommenen Zahl, J. Reine Angew. Math. 186 (1944), 25-29. MR 6:255c
  • 16. U. Kühnel, Verscharfung der notwendigen Bedingungen für die Existenz von ungeraden vollkommenen Zahlen, Math. Z. 52 (1949), 202-211. MR 11:714b
  • 17. T. Nagell, Introduction to number theory, Wiley, New York, 1951. MR 13:207b
  • 18. C. Pomerance, Odd perfect numbers are divisible by at least seven distinct primes, Acta Arith. 25 (1974), 265-300. MR 49:4925
  • 19. C. Pomerance, The second largest prime factor of an odd perfect number, Math. Comp. 29 (1975), 914-921. MR 51:8018
  • 20. N. Robbins, The non-existence of odd perfect numbers with less than seven distinct prime factors, Ph.D. Thesis, Polytechnic Institute of Brooklyn (1972).
  • 21. J. Sylvester, Sur l'impossibilité de l'existence d'un nombre parfait impair qui ne contient pas au moins 5 diviseurs premiers distincts, C. R. Acad. Sci. Paris 106 (1888), 522-526.
  • 22. G. Webber, Non-existence of odd perfect numbers of the form $3^{2\beta} p^\alpha s_1^{2\beta _1} s_2^{2\beta _2} s_3^{2\beta _3}$, Duke Math. J. 18 (1951), 741-749. MR 13:207e.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11A25, 11Y70

Retrieve articles in all journals with MSC (1991): 11A25, 11Y70


Additional Information

Douglas E. Iannucci
Affiliation: University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802
Email: diannuc@uvi.edu

DOI: https://doi.org/10.1090/S0025-5718-99-01126-6
Keywords: Perfect numbers, cyclotomic polynomials
Received by editor(s): June 16, 1997
Received by editor(s) in revised form: August 25, 1997
Published electronically: May 17, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society