Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Canonical construction of finite elements


Author: R. Hiptmair
Journal: Math. Comp. 68 (1999), 1325-1346
MSC (1991): Primary 65N30, 41A10, 58A15
Published electronically: May 20, 1999
MathSciNet review: 1665954
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The mixed variational formulation of many elliptic boundary value problems involves vector valued function spaces, like, in three dimensions, $\boldsymbol H(\mathbf{\operatorname{curl}};\Omega)$ and ${{\boldsymbol H}(\operatorname{Div};\Omega)}$. Thus finite element subspaces of these function spaces are indispensable for effective finite element discretization schemes. Given a simplicial triangulation of the computational domain $\Omega$, among others, Raviart, Thomas and Nédélec have found suitable conforming finite elements for $\boldsymbol H(\operatorname{Div};\Omega)$ and $\boldsymbol H(\mathbf{\operatorname{curl}};\Omega)$. At first glance, it is hard to detect a common guiding principle behind these approaches. We take a fresh look at the construction of the finite spaces, viewing them from the angle of differential forms. This is motivated by the well-known relationships between differential forms and differential operators: $\operatorname{div}$, $\operatorname{\mathbf{curl}}$ and $\operatorname{\mathbf{grad}}$ can all be regarded as special incarnations of the exterior derivative of a differential form. Moreover, in the realm of differential forms most concepts are basically dimension-independent. Thus, we arrive at a fairly canonical procedure to construct conforming finite element subspaces of function spaces related to differential forms. In any dimension we can give a simple characterization of the local polynomial spaces and degrees of freedom underlying the definition of the finite element spaces. With unprecedented ease we can recover the familiar $\boldsymbol H (\operatorname{Div};\Omega)$- and $\boldsymbol H(\mathbf{\operatorname{curl}};\Omega)$-conforming finite elements, and establish the unisolvence of degrees of freedom. In addition, the use of differential forms makes it possible to establish crucial algebraic properties of the canonical interpolation operators and representation theorems in a single sweep for all kinds of spaces.


References [Enhancements On Off] (What's this?)

  • 1. Douglas N. Arnold, Richard S. Falk, and R. Winther, Preconditioning in 𝐻(𝑑𝑖𝑣) and applications, Math. Comp. 66 (1997), no. 219, 957–984. MR 1401938, 10.1090/S0025-5718-97-00826-0
  • 2. D. BALDOMIR, Differential forms and electromagnetism in 3-dimensional Euclidean space $\mathbb{R}^3$., IEE Proc. A, 133 (1986), pp. 139-143. CMP 18:17
  • 3. A. BOSSAVIT, A rationale for edge elements in 3D field computations, IEEE Trans. Mag., 24 (1988), pp. 1325-1346.
  • 4. height 2pt depth -1.6pt width 23pt, Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism, IEE Proc. A, 135 (1988), pp. 1325-1346.
  • 5. height 2pt depth -1.6pt width 23pt, A new viewpoint on mixed elements, Meccanica, 27 (1992), pp. 1325-1346.
  • 6. height 2pt depth -1.6pt width 23pt, Électromagnétisme, en vue de la modélisation, Springer-Verlag, Paris, 1993. CMP 98:11
  • 7. height 2pt depth -1.6pt width 23pt, Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elements, no. 2 in Academic Press Electromagnetism Series, Academic Press, San Diego, 1998. CMP 98:06
  • 8. Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258
  • 9. Franco Brezzi, Jim Douglas Jr., Ricardo Durán, and Michel Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51 (1987), no. 2, 237–250. MR 890035, 10.1007/BF01396752
  • 10. Franco Brezzi, Jim Douglas Jr., Michel Fortin, and L. Donatella Marini, Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 4, 581–604 (English, with French summary). MR 921828
  • 11. Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205
  • 12. Z. CAI, R. PARASHKEVOV, T. RUSSEL, AND X. YE, Domain decomposition for a mixed finite element method in three dimensions, in Proc. 9th Internat. Conf. Domain Decomposition Methods, Bergen, Norway, 1996 (to appear).
  • 13. Henri Cartan, Formes différentielles. Applications élémentaires au calcul des variations et à la théorie des courbes et des surfaces, Hermann, Paris, 1967 (French). MR 0231303
  • 14. Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
  • 15. G. DESCHAMPS, Electromagnetics and differential forms, Proc IEEE, 69 (1981), pp. 1325-1346.
  • 16. Jim Douglas Jr. and Jean E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39–52. MR 771029, 10.1090/S0025-5718-1985-0771029-9
  • 17. R. E. Ewing and J. Wang, Analysis of the Schwarz algorithm for mixed finite elements methods, RAIRO Modél. Math. Anal. Numér. 26 (1992), no. 6, 739–756 (English, with English and French summaries). MR 1183415
  • 18. V. Girault, Curl-conforming finite element methods for Navier-Stokes equations with nonstandard boundary conditions in 𝑅³, The Navier-Stokes equations (Oberwolfach, 1988) Lecture Notes in Math., vol. 1431, Springer, Berlin, 1990, pp. 201–218. MR 1072191, 10.1007/BFb0086071
  • 19. Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383
  • 20. R. HIPTMAIR, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal. 36 (1999), 204-225. CMP 99:04
  • 21. R. HIPTMAIR AND R. HOPPE, Multilevel preconditioning for mixed problems in three dimensions, Tech. Rep. 359, Mathematisches Institut, Universität Augsburg, 1996. to appear in Numer. Math.
  • 22. R. HIPTMAIR AND A. TOSELLI, Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions., in Parallel Solution of PDEs, IMA Volumes in Mathematics and its Applications, Springer, Berlin, 1998. to appear.
  • 23. R. HOPPE AND B. WOHLMUTH, A comparison of a posteriori error estimators for mixed finite elements, Tech. Rep. 350, Math.-Nat. Fakultät, Universität Augsburg, 1996. to appear in Math. Comp.
  • 24. E. F. Kaasschieter and A. J. M. Huijben, Mixed-hybrid finite elements and streamline computation for the potential flow problem, Numer. Methods Partial Differential Equations 8 (1992), no. 3, 221–266. MR 1158244, 10.1002/num.1690080302
  • 25. K. MAHADEVAN AND R. MITTA, Use of Whitney's edge and face elements for efficient finite element time domain solution of Maxwell's equations, J. Electromagn. Waves Appl., 8 (1994), pp. 1325-1346.
  • 26. J.-C. Nédélec, Mixed finite elements in 𝑅³, Numer. Math. 35 (1980), no. 3, 315–341. MR 592160, 10.1007/BF01396415
  • 27. J.-C. Nédélec, A new family of mixed finite elements in 𝑅³, Numer. Math. 50 (1986), no. 1, 57–81. MR 864305, 10.1007/BF01389668
  • 28. P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 292–315. Lecture Notes in Math., Vol. 606. MR 0483555
  • 29. Panayot S. Vassilevski and Jun Ping Wang, Multilevel iterative methods for mixed finite element discretizations of elliptic problems, Numer. Math. 63 (1992), no. 4, 503–520. MR 1189534, 10.1007/BF01385872
  • 30. A. WALSLEBEN, Whitney Elemente zur Diskretisierung der Maxwell-Gleichungen, Master's thesis, Institut für Mathematik I, Freie Universität Berlin, 1996.
  • 31. Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957. MR 0087148

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65N30, 41A10, 58A15

Retrieve articles in all journals with MSC (1991): 65N30, 41A10, 58A15


Additional Information

R. Hiptmair
Affiliation: Sonderforschungsbereich 382, Universität Tübingen, 72076 Tübingen, Germany
Email: hiptmair@na.uni-tuebingen.de

DOI: https://doi.org/10.1090/S0025-5718-99-01166-7
Keywords: Finite elements, differential forms, Raviart-Thomas elements, N\'ed\'elec elements, Whitney forms, discrete potentials
Received by editor(s): January 23, 1997
Received by editor(s) in revised form: November 10, 1997
Published electronically: May 20, 1999
Article copyright: © Copyright 1999 American Mathematical Society