A domain embedding preconditioner

for the Lagrange multiplier system

Authors:
Einar Haug and Ragnar Winther

Journal:
Math. Comp. **69** (2000), 65-82

MSC (1991):
Primary 65F10, 65N22, 65N30

Published electronically:
March 2, 1999

MathSciNet review:
1642817

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Finite element approximations for the Dirichlet problem associated to a second-order elliptic differential equation are studied. The purpose of this paper is to discuss domain embedding preconditioners for discrete systems. The essential boundary condition on the interior interface is removed by introducing Lagrange multipliers. The associated discrete system, with a saddle point structure, is preconditioned by a block diagonal preconditioner. The main contribution of this paper is to propose a new operator, constructed from the -inner product, for the block of the preconditioner corresponding to the multipliers.

**1.**D. N. Arnold, F. Brezzi, and M. Fortin,*A stable finite element for the Stokes equations*, Calcolo**21**(1984), no. 4, 337–344 (1985). MR**799997**, 10.1007/BF02576171**2.**Douglas N. Arnold, Richard S. Falk, and R. Winther,*Preconditioning in 𝐻(𝑑𝑖𝑣) and applications*, Math. Comp.**66**(1997), no. 219, 957–984. MR**1401938**, 10.1090/S0025-5718-97-00826-0**3.**G. P. Astrahancev,*The method of fictitious domains for a second order elliptic equation with natural boundary conditions*, Ž. Vyčisl. Mat. i Mat. Fiz.**18**(1978), no. 1, 118–125, 269 (Russian). MR**0468228****4.**Ivo Babuška,*The finite element method with Lagrangian multipliers*, Numer. Math.**20**(1972/73), 179–192. MR**0359352****5.**James H. Bramble,*The Lagrange multiplier method for Dirichlet’s problem*, Math. Comp.**37**(1981), no. 155, 1–11. MR**616356**, 10.1090/S0025-5718-1981-0616356-7**6.**J. H. Bramble, J. E. Pasciak, and A. H. Schatz,*The construction of preconditioners for elliptic problems by substructuring. I*, Math. Comp.**47**(1986), no. 175, 103–134. MR**842125**, 10.1090/S0025-5718-1986-0842125-3**7.**Franco Brezzi and Michel Fortin,*Mixed and hybrid finite element methods*, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR**1115205****8.**Zhi Qiang Cai, Charles I. Goldstein, and Joseph E. Pasciak,*Multilevel iteration for mixed finite element systems with penalty*, SIAM J. Sci. Comput.**14**(1993), no. 5, 1072–1088. MR**1232176**, 10.1137/0914065**9.**Vivette Girault and Pierre-Arnaud Raviart,*Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR**851383****10.**Roland Glowinski, Tsorng-Whay Pan, and Jacques Périaux,*A fictitious domain method for Dirichlet problem and applications*, Comput. Methods Appl. Mech. Engrg.**111**(1994), no. 3-4, 283–303. MR**1259864**, 10.1016/0045-7825(94)90135-X**11.**R. Glowinski, T.-W. Pan, and J.Périaux,*On a domain embedding method for flow around moving rigid bodies*, to appear in Bjørstad et. al., editor,*Ninth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Bergen, 1996*.**12.**Wolfgang Hackbusch,*Iterative solution of large sparse systems of equations*, Applied Mathematical Sciences, vol. 95, Springer-Verlag, New York, 1994. Translated and revised from the 1991 German original. MR**1247457****13.**G. I. Marchuk, Yu. A. Kuznetsov, and A. M. Matsokin,*Fictitious domain and domain decomposition methods*, Soviet J. Numer. Anal. Math. Modelling**1**(1986), no. 1, 3–35. MR**897996****14.**S. V. Nepomnyaschikh,*Decomposition and fictitious domains methods for elliptic boundary value problems*, Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Norfolk, VA, 1991) SIAM, Philadelphia, PA, 1992, pp. 62–72. MR**1189564****15.**S. V. Nepomnyaschikh,*Mesh theorems on traces, normalizations of function traces and their inversion*, Soviet J. Numer. Anal. Math. Modelling**6**(1991), no. 3, 223–242. MR**1126677****16.**S. V. Nepomnyaschikh,*Method of splitting into subspaces for solving elliptic boundary value problems in complex-form domains*, Soviet J. Numer. Anal. Math. Modelling**6**(1991), no. 2, 151–168. MR**1118110****17.**C. C. Paige and M. A. Saunders,*Solutions of sparse indefinite systems of linear equations*, SIAM J. Numer. Anal.**12**(1975), no. 4, 617–629. MR**0383715****18.**T. Rossi,*Fictitious domain methods with seperable preconditioners*, Ph.D. thesis, University of Jyväskylä, Depertment of Mathematics, 1995.**19.**T. Rusten, P.S. Vassilevski, and R. Winther,*Domain embedding preconditioners for mixed systems*, preprint, to appear in Numer. Lin Alg. Appl.**20.**P.S. Vassilevski,*On some applications of the -stable wavelet-like hierarchical finite element space decompositions*, in*Proceedings of the Conference on the Mathematics of Finite Elements and Applications, MAFELAP 1996*, held June 25-28, 1996, Brunel University, London, UK., to be published by Wiley.**21.**Panayot S. Vassilevski and Jun Ping Wang,*Multilevel iterative methods for mixed finite element discretizations of elliptic problems*, Numer. Math.**63**(1992), no. 4, 503–520. MR**1189534**, 10.1007/BF01385872

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
65F10,
65N22,
65N30

Retrieve articles in all journals with MSC (1991): 65F10, 65N22, 65N30

Additional Information

**Einar Haug**

Affiliation:
SINTEF, P. O. Box 124 Blindern, N–0314 Oslo, Norway

Email:
Einar.Haug@math.sintef.no

**Ragnar Winther**

Affiliation:
Department of Informatics, University of Oslo, P. O. Box 1080 Blindern, N–0316 Oslo, Norway

Email:
Ragnar.Winther@ifi.uio.no

DOI:
http://dx.doi.org/10.1090/S0025-5718-99-01076-5

Keywords:
Second--order elliptic problems,
Dirichlet boundary conditions,
Lagrange multiplier method,
preconditioning,
domain embedding

Received by editor(s):
March 26, 1997

Received by editor(s) in revised form:
March 17, 1998

Published electronically:
March 2, 1999

Additional Notes:
This work was partially supported by the Research Council of Norway (NFR), program no. 100998/420 and STP.29643

Article copyright:
© Copyright 1999
American Mathematical Society