Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Conjugacy classes in finite permutation groups via homomorphic images

Author: Alexander Hulpke
Journal: Math. Comp. 69 (2000), 1633-1651
MSC (1991): Primary 20-04, 20B40, 68Q40
Published electronically: May 24, 1999
MathSciNet review: 1659847
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The lifting of results from factor groups to the full group is a standard technique for solvable groups. This paper shows how to utilize this approach in the case of non-solvable normal subgroups to compute the conjugacy classes of a finite group.

References [Enhancements On Off] (What's this?)

  • 1. Robert Beals and Ákos Seress, Structure forest and composition factors for small base groups in nearly linear time, Proceedings of the $24^{\mathrm{th}}$ ACM Symposium on Theory of Computing, ACM Press, 1992, pp. 116-125.
  • 2. Gregory Butler, Computing in permutation and matrix groups II: Backtrack algorithms, Math. Comp. 39 (1982), no. 160, 671-670. MR 83k:20004b
  • 3. Greg[ory] Butler, An inductive scheme for computing conjugacy classes in permutation groups, Math. Comp. 62 (1994), no. 205, 363-383. MR 94c:20011
  • 4. John Cannon and Derek Holt, Computing chief series, composition series and socles in large permutation groups, J. Symbolic Comput. 24 (1997), 285-301. MR 98m:20009
  • 5. John Cannon and Bernd Souvignier, On the computation of conjugacy classes in permutation groups, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Wolfgang Küchlin, ed.), The Association for Computing Machinery, ACM Press, 1997, pp. 392-399.
  • 6. John H. Conway, Alexander Hulpke, and John McKay, On transitive permutation groups, LMS J. Comput. Math. 1 (1998), 1-8. (electronic) CMP 98:15
  • 7. Gene Cooperman and Michael Tselman, Using tadpoles to reduce memory and communication requirements for exhaustive, breadth-first search using distributed computers, Proceedings of ACM Symposium on Parallel Architectures and Algorithms (SPAA-97), ACM Press, 1997, pp. 231-238.
  • 8. Volkmar Felsch and Joachim Neubüser, An algorithm for the computation of conjugacy classes and centralizers in $p$-groups, Symbolic and Algebraic Computation (Proceedings of EUROSAM 79, An International Symposium on Symbolic and Algebraic Manipulation, Marseille, 1979) (Edward W. Ng, ed.), Lecture Notes in Computer Science, 72, Springer, Heidelberg, 1979, pp. 452-465. MR 82d:20003
  • 9. The GAP Group, School of Mathematical and Computational Sciences, University of St Andrews, and Lehrstuhl D fur Mathematik, RWTH Aachen, GAP - Groups, Algorithms, and Programming, Version 4, 1998.
  • 10. Daniel Gorenstein, Finite simple groups, Plenum Press, 1982. MR 84j:20002
  • 11. Alexander Hulpke, Konstruktion transitiver Permutationsgruppen, Ph.D. thesis, Rheinisch-Westfalische Technische Hochschule, Aachen, Germany, 1996.
  • 12. Mark Jerrum, Computational Polya theory, Surveys in Combinatorics, 1995 (Stirling) (Peter Rowlinson, ed.), London Mathematical Society Lecture Note Series, vol. 218, Cambridge University Press, 1995, pp. 103-118. MR 96h:05012
  • 13. William M. Kantor and Eugene M. Luks, Computing in quotient groups, Proceedings of the $22^{\mathrm{nd}}$ ACM Symposium on Theory of Computing, Baltimore, ACM Press, 1990, pp. 524-563.
  • 14. Eugene M. Luks, Computing the composition factors of a permutation group in polynomial time, Combinatorica 7 (1987), 87-89. MR 89c:20007
  • 15. M[atthias] Mecky and J[oachim] Neubüser, Some remarks on the computation of conjugacy classes of soluble groups, Bull. Austral. Math. Soc. 40 (1989), no. 2, 281-292. MR 90i:20001
  • 16. Peter M. Neumann, Some algorithms for computing with finite permutation groups, Groups - St Andrews 1985 (Edmund F. Robertson and Colin M. Campbell, eds.), Cambridge University Press, 1986, pp. 59-92. MR 89b:20004
  • 17. Richard Parker, The Computer Calculation of Modular Characters (the MeatAxe), Computational Group Theory (Michael D. Atkinson, ed.), Academic Press, 1984, pp. 267-274. MR 85k:20041
  • 18. Charles C. Sims, Determining the conjugacy classes of a permutation group, Computers in Algebra and Number Theory (Garrett Birkhoff and Marshall Hall Jr., eds.), SIAM-AMS Proc., vol. 4, American Mathematical Society, Providence, RI, 1971, pp. 191-195. MR 49:2901
  • 19. -, Computing the order of a solvable permutation group, J. Symbolic Comput. 9 (1990), 699-705. MR 91m:20011
  • 20. Heiko Theißen, Methoden zur Bestimmung der rationalen Konjugiertheit in endlichen Gruppen, Diplomarbeit, Lehrstuhl D fur Mathematik, Rheinisch-Westfalische Technische Hochschule, Aachen, 1993.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (1991): 20-04, 20B40, 68Q40

Retrieve articles in all journals with MSC (1991): 20-04, 20B40, 68Q40

Additional Information

Alexander Hulpke
Affiliation: School of Mathematical and Computational Sciences, University of St. Andrews, The North Haugh, UK-St Andrews, Fife KY16 9SS, SCOTLAND

Keywords: Conjugacy classes, permutation group, algorithm
Received by editor(s): November 17, 1997
Received by editor(s) in revised form: November 17, 1998
Published electronically: May 24, 1999
Additional Notes: Supported by EPSRC Grant GL/L21013
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society