Monotonicity preservation on triangles

Authors:
Michael S. Floater and J. M. Peña

Journal:
Math. Comp. **69** (2000), 1505-1519

MSC (1991):
Primary 41A10, 65D17; Secondary 41A63

DOI:
https://doi.org/10.1090/S0025-5718-99-01176-X

Published electronically:
May 20, 1999

MathSciNet review:
1677482

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that Bernstein polynomials on triangles preserve monotonicity. In this paper we define and study three kinds of monotonicity preservation of systems of bivariate functions on a triangle. We characterize and compare several of these systems and derive some geometric applications.

**[1]**J. M. Carnicer, M. García-Esnaola, and J. M. Peña,*Convexity of rational curves and total positivity*, J. Comp. Appl. Math.**71**(1996), 365-382. MR**97k:65043****[2]**J. M. Carnicer and J. M. Peña,*Shape preserving representations and optimality of the Bernstein basis*, Adv. Comput. Math.**1**(1993), 173-196. MR**94i:65138****[3]**J. M. Carnicer and J. M. Peña,*Monotonicity preserving representations*, Curves and Surfaces in Geometric Design, II, P. J. Laurent, A. Le Méhauté and L. L. Schumaker, (eds.), AKPeters, Boston, 1994, pp. 83-90. MR**95g:65198****[4]**J. M. Carnicer and J. M. Peña,*Total positivity and optimal bases*, Total Positivity and its Applications (M. Gasca and C.A. Micchelli, eds.), Kluwer Academic Press, Dordrecht, 1996, pp. 133-155. MR**97i:41012****[5]**G. Farin,*Curves and Surfaces for Computer Aided Geometric Design*, Academic Press, Boston, 1988. MR**90c:65014****[6]**R. T. Farouki and T. N. T. Goodman,*On the optimal stability of the Bernstein basis*, Math. Comp.**65**(1996), 1553-1566. MR**97a:65021****[7]**T. N. T. Goodman,*Variation diminishing properties of Bernstein polynomials on triangles*, J. Approx. Theory**50**(1987), 111-126. MR**88g:41006****[8]**T. N. T. Goodman,*Further variation diminishing properties of Bernstein polynomials on triangles*, Constr. Approx.**3**(1987), 297-305. MR**88j:41022****[9]**T. N. T. Goodman,*Shape preserving representations*, Mathematical Methods in Computer Aided Geometric Design T. Lyche and L.L. Schumaker (eds.), Academic Press, New York, 1989, pp. 333-351. MR**91a:65031****[10]**J. Hoschek and D. Lasser,*Fundamentals of Computer Aided Geometric Design*, A. K. Peters, Wellesley, MA, 1993. MR**94i:65003****[11]**S. Karlin,*Total Positivity*, Stanford University Press, Stanford, 1968. MR**37:5667****[12]**T. Sauer,*Multivariate Bernstein polynomials and convexity*, Comput. Aided Geom. Design**8**(1991), 465-478. MR**93a:41012**

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
41A10,
65D17,
41A63

Retrieve articles in all journals with MSC (1991): 41A10, 65D17, 41A63

Additional Information

**Michael S. Floater**

Affiliation:
SINTEF Applied Mathematics, P.O. Box 124 Blindern, 0314 Oslo, NORWAY

Email:
mif@math.sintef.no

**J. M. Peña**

Affiliation:
Departamento de Matemática Aplicada, Universidad de Zaragoza, Edificio de Mate- máticas, Planta 1a, 50009 Zaragoza, SPAIN

Email:
jmpena@posta.unizar.es

DOI:
https://doi.org/10.1090/S0025-5718-99-01176-X

Keywords:
Monotonicity,
shape preservation,
bivariate Bernstein polynomials,
control net

Received by editor(s):
May 27, 1997

Received by editor(s) in revised form:
December 7, 1998

Published electronically:
May 20, 1999

Additional Notes:
The authors were supported in part by the EU project CHRX-CT94-0522.

Article copyright:
© Copyright 2000
American Mathematical Society