Uniform convergence of the multigrid V-cycle for an anisotropic problem

Authors:
James H. Bramble and Xuejun Zhang

Journal:
Math. Comp. **70** (2001), 453-470

MSC (2000):
Primary 65N30; Secondary 65F10

Published electronically:
February 21, 2000

MathSciNet review:
1709148

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

In this paper, we consider the linear systems arising from the standard finite element discretizations of certain second order anisotropic problems with variable coefficients on a rectangle. We study the performance of a V-cycle multigrid method applied to the finite element equations. Since the usual ``regularity and approximation'' assumption does not hold for the anisotropic finite element problems, the standard multigrid convergence theory cannot be applied directly. In this paper, a modification of the theory of Braess and Hackbusch will be presented. We show that the V-cycle multigrid iteration with a line smoother is a uniform contraction in the energy norm. In the verification of the hypotheses in our theory, we use a weighted -norm estimate for the error in the Galerkin finite element approximation and a smoothing property of the line smoothers which is proved in this paper.

**1.**I. Babuška and A. K. Aziz,*On the angle condition in the finite element method*, SIAM J. Numer. Anal.**13**(1976), no. 2, 214–226. MR**0455462****2.**Stephen F. McCormick (ed.),*Multigrid methods*, Frontiers in Applied Mathematics, vol. 3, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1987. MR**972752****3.**D. Braess and W. Hackbusch,*A new convergence proof for the multigrid method including the 𝑉-cycle*, SIAM J. Numer. Anal.**20**(1983), no. 5, 967–975. MR**714691**, 10.1137/0720066**4.**James H. Bramble and Joseph E. Pasciak,*New convergence estimates for multigrid algorithms*, Math. Comp.**49**(1987), no. 180, 311–329. MR**906174**, 10.1090/S0025-5718-1987-0906174-X**5.**James H. Bramble and Joseph E. Pasciak,*New estimates for multilevel algorithms including the 𝑉-cycle*, Math. Comp.**60**(1993), no. 202, 447–471. MR**1176705**, 10.1090/S0025-5718-1993-1176705-9**6.**James H. Bramble and Joseph E. Pasciak,*Uniform convergence estimates for multigrid 𝑉-cycle algorithms with less than full elliptic regularity*, Domain decomposition methods in science and engineering (Como, 1992), Contemp. Math., vol. 157, Amer. Math. Soc., Providence, RI, 1994, pp. 17–26. MR**1262601**, 10.1090/conm/157/01401**7.**James H. Bramble, Joseph E. Pasciak, Jun Ping Wang, and Jinchao Xu,*Convergence estimates for multigrid algorithms without regularity assumptions*, Math. Comp.**57**(1991), no. 195, 23–45. MR**1079008**, 10.1090/S0025-5718-1991-1079008-4**8.**M. Griebel and P. Oswald,*Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems*, Adv. Comput. Math.**4**(1995), no. 1-2, 171–206. MR**1338900**, 10.1007/BF02123478**9.**Wolfgang Hackbusch,*Multigrid methods and applications*, Springer Series in Computational Mathematics, vol. 4, Springer-Verlag, Berlin, 1985. MR**814495****10.**P. W. Hemker,*Multigrid methods for problems with a small parameter in the highest derivative*, Numerical analysis (Dundee, 1983) Lecture Notes in Math., vol. 1066, Springer, Berlin, 1984, pp. 106–121. MR**760459**, 10.1007/BFb0099520**11.**Nicolas Neuss,*𝑉-cycle convergence with unsymmetric smoothers and application to an anisotropic model problem*, SIAM J. Numer. Anal.**35**(1998), no. 3, 1201–1212 (electronic). MR**1619887**, 10.1137/S0036142996310848**12.**Rob Stevenson,*New estimates of the contraction number of 𝑉-cycle multi-grid with applications to anisotropic equations*, Incomplete decomposition (𝐼𝐿𝑈)—algorithms, theory and applications (Kiel, 1992) Notes Numer. Fluid Mech., vol. 41, Vieweg, Braunschweig, 1993, pp. 159–167. MR**1232481****13.**Rob Stevenson,*Robustness of multi-grid applied to anisotropic equations on convex domains and on domains with re-entrant corners*, Numer. Math.**66**(1993), no. 3, 373–398. MR**1246963**, 10.1007/BF01385703**14.**Rob Stevenson,*Modified ILU as a smoother*, Numer. Math.**68**(1994), no. 2, 295–309. MR**1283344**, 10.1007/s002110050063**15.**Rob Stevenson,*Robust multi-grid with 7-point ILU smoothing*, Multigrid methods, IV (Amsterdam, 1993) Internat. Ser. Numer. Math., vol. 116, Birkhäuser, Basel, 1994, pp. 295–307. MR**1301134****16.**R. P. Stevenson,*Robustness of the additive and multiplicative frequency decomposition multi-level method*, Computing**54**(1995), no. 4, 331–346 (English, with English and German summaries). MR**1334615**, 10.1007/BF02238231**17.**G. Wittum,*Linear iterations as smoothers in multigrid methods: theory with applications to incomplete decompositions*, IMPACT Comput. Sci. Eng.**1**(1989), 180-215.**18.**Gabriel Wittum,*On the robustness of 𝐼𝐿𝑈 smoothing*, SIAM J. Sci. Statist. Comput.**10**(1989), no. 4, 699–717. MR**1000741**, 10.1137/0910043**19.**Jinchao Xu,*Iterative methods by space decomposition and subspace correction*, SIAM Rev.**34**(1992), no. 4, 581–613. MR**1193013**, 10.1137/1034116**20.**Harry Yserentant,*Old and new convergence proofs for multigrid methods*, Acta numerica, 1993, Acta Numer., Cambridge Univ. Press, Cambridge, 1993, pp. 285–326. MR**1224685**, 10.1017/S0962492900002385

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
65N30,
65F10

Retrieve articles in all journals with MSC (2000): 65N30, 65F10

Additional Information

**James H. Bramble**

Affiliation:
Department of Mathematics, Texas A&M University, College Station, TX 77843

Email:
bramble@math.tamu.edu

**Xuejun Zhang**

Affiliation:
Department of Mathematics, Texas A&M University, College Station, TX 77843

Email:
xzhang@math.tamu.edu

DOI:
http://dx.doi.org/10.1090/S0025-5718-00-01222-9

Received by editor(s):
December 4, 1997

Received by editor(s) in revised form:
June 23, 1998, and April 6, 1999

Published electronically:
February 21, 2000

Additional Notes:
The work of the first author was partially supported by the National Science Foundation under grant #DMS-9626567, and the work of the second author was partially supported by the National Science Foundation under Grant #DMS-9805590.

Article copyright:
© Copyright 2000
American Mathematical Society