Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Verifying the Goldbach conjecture up to $4\cdot 10^{14}$


Author: Jörg Richstein
Journal: Math. Comp. 70 (2001), 1745-1749
MSC (2000): Primary 11P32; Secondary 11-04
DOI: https://doi.org/10.1090/S0025-5718-00-01290-4
Published electronically: July 18, 2000
MathSciNet review: 1836932
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

Using a carefully optimized segmented sieve and an efficient checking algorithm, the Goldbach conjecture has been verified and is now known to be true up to $4\cdot 10^{14}$. The program was distributed to various workstations. It kept track of maximal values of the smaller prime $p$ in the minimal partition of the even numbers, where a minimal partition is a representation $2n = p + q$ with $2n - p'$being composite for all $p' < p$. The maximal prime $p$ needed in the considered interval was found to be 5569 and is needed for the partition 389965026819938 = 5569 + 389965026814369.


References [Enhancements On Off] (What's this?)

  • 1. C. Bays, R. Hudson, The Segmented Sieve of Eratosthenes and Primes in Arithmetic Progressions, BIT 17 (1977), 121-127. MR 56:5405
  • 2. J. Bohman, C. E. Fröberg, Numerical Results on the Goldbach Conjecture, BIT 15 (1975), 239-243. MR 52:10644
  • 3. R. P. Brent, The first occurrence of large gaps between successive primes, Math. Comp., 27 (1973), 959-963. MR 48:8360
  • 4. J. R. Chen, Y. Wang, On the odd Goldbach problem, Acta Math. Sinica, 32 (1989), 702-718. MR 91e:11108
  • 5. J. M. Deshouillers, H. J. J. te Riele, Y. Saouter New experimental results concerning the Goldbach conjecture, Proc. 3rd Int. Symp. on Algorithmic Number Theory, LNCS 1423 (1998), 204-215. CMP 2000:05
  • 6. P. H. Fuss, Correspondance mathématique et physique de quelques célèbres géomètres du XVIII$^e$ siècle, tome I, St. Pétersbourg, (1843), 127+135.
  • 7. A. Granville, H. J. J. te Riele, J. van de Lune Checking the Goldbach Conjecture on a Vector Computer, Number Theory and Applications (R. A. Mollin, ed.), Kluwer, Dordrecht (1989), 423-433. MR 93c:11085
  • 8. G. Jaeschke, On strong pseudoprimes to several bases, Math. Comp. 61 (1993), 915-926. MR 94d:11004
  • 9. A. P. Juskevic, Christian Goldbach: 1690-1764, Vita mathematica, Birkhäuser Basel (1994), 161.
  • 10. H. Riesel, Prime Numbers and Computer Methods for Factorization, 2nd Edition, Birkhäuser, (1994). MR 95h:11142
  • 11. Y. Saouter, Checking the odd Goldbach conjecture up to $10^{20}$, Math. Comp. 67 (1998), 863-866. MR 98g:11115
  • 12. M. K. Shen, On checking the Goldbach Conjecture, BIT 4 (1964), 243-245. MR 30:3051
  • 13. M. K. Sinisalo, Checking the Goldbach Conjecture up to $4\cdot 10^{11}$, Math. Comp. 61 (1993), 931-934. MR 94a:11157
  • 14. M. L. Stein, P. R. Stein, Experimental results on additive 2 bases, BIT 38 (1965), 427-434.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11P32, 11-04

Retrieve articles in all journals with MSC (2000): 11P32, 11-04


Additional Information

Jörg Richstein
Affiliation: Institut für Informatik, Fachbereich Mathematik, Justus-Liebig-Universität, Gies- sen, Germany
Email: Joerg.Richstein@informatik.uni-giessen.de

DOI: https://doi.org/10.1090/S0025-5718-00-01290-4
Keywords: Goldbach conjecture, distributed computing
Received by editor(s): October 14, 1999
Received by editor(s) in revised form: January 6, 2000
Published electronically: July 18, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society