Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Analysis of a finite element method for pressure/potential formulation of elastoacoustic spectral problems

Authors: Alfredo Bermúdez and Rodolfo Rodríguez
Journal: Math. Comp. 71 (2002), 537-552
MSC (2000): Primary 65N25, 65N30; Secondary 70J30, 74F10, 76Q05
Published electronically: September 17, 2001
MathSciNet review: 1885614
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A finite element method to approximate the vibration modes of a structure enclosing an acoustic fluid is analyzed. The fluid is described by using simultaneously pressure and displacement potential variables, whereas displacement variables are used for the solid. A mathematical analysis of the continuous spectral problem is given. The problem is discretized on a simplicial mesh by using piecewise constant elements for the pressure and continuous piecewise linear finite elements for the other fields. Error estimates are settled for approximate eigenvalues and eigenfrequencies. Finally, implementation issues are discussed.

References [Enhancements On Off] (What's this?)

  • 1. I. Babuska and J. Osborn, Eigenvalue problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions, eds., North Holland, Amsterdam, 1991. CMP 91:14
  • 2. A. Bermúdez, R. Durán, M. A. Muschietti, R. Rodríguez, and J. Solomin, Finite element vibration analysis of fluid-solid systems without spurious modes, SIAM J. Numer. Anal. 32 (1995), no. 4, 1280–1295. MR 1342293, 10.1137/0732059
  • 3. Alfredo Bermúdez, Ricardo Durán, and Rodolfo Rodríguez, Finite element analysis of compressible and incompressible fluid-solid systems, Math. Comp. 67 (1998), no. 221, 111–136. MR 1434937, 10.1090/S0025-5718-98-00901-6
  • 4. A. Bermúdez, L. Hervella-Nieto and R. Rodríguez, Finite element computation of three dimensional elastoacoustic vibrations, J. Sound & Vibr., 219 (1999) 277-304.
  • 5. Alfredo Bermúdez and Rodolfo Rodríguez, Finite element computation of the vibration modes of a fluid-solid system, Comput. Methods Appl. Mech. Engrg. 119 (1994), no. 3-4, 355–370. MR 1316022, 10.1016/0045-7825(94)90095-7
  • 6. P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions, eds., North Holland, Amsterdam, 1991. CMP 91:14
  • 7. Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. \jname RAIRO Analyse Numérique 9 (1975), no. R-2, 77–84 (English, with Loose French summary). MR 0400739
  • 8. Monique Dauge, Problèmes de Neumann et de Dirichlet sur un polyèdre dans 𝑅³: régularité dans des espaces de Sobolev 𝐿_{𝑝}, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 1, 27–32 (French, with English summary). MR 954085
  • 9. Monique Dauge, Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR 961439
  • 10. M. Hamdi, Y. Ousset and G. Verchery, A displacement method for the analysis of vibrations of coupled fluid-structure systems, Internat. J. Numer. Methods Eng., 13 (1978) 139-150.
  • 11. Tosio Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. MR 0407617
  • 12. M. Mellado and R. Rodríguez, Efficient solution of fluid-structure vibration problems, Appl. Numer. Math. 36 (2001) 389-400. CMP 2001:10
  • 13. H. Morand and R. Ohayon, Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element results, Internat. J. Numer. Methods Eng., 14, (1979) 741-755.
  • 14. H.J-P. Morand and R. Ohayon, Fluid-structure interactions, John Wiley & Sons, New York, 1995.
  • 15. T. von Petersdorff, Boundary value problems of elasticity in polyhedra: singularities and approximation with boundary element methods, PhD Thesis, Technical University Darmstadt, Darmstadt, Germany, 1989
  • 16. T. von Petersdorff and E. P. Stephan, Regularity of mixed boundary value problems in 𝑅³ and boundary element methods on graded meshes, Math. Methods Appl. Sci. 12 (1990), no. 3, 229–249. MR 1043756, 10.1002/mma.1670120306
  • 17. O.C. Zienkiewicz and R.L. Taylor, The finite element method, Mc Graw Hill, London, 1989.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N25, 65N30, 70J30, 74F10, 76Q05

Retrieve articles in all journals with MSC (2000): 65N25, 65N30, 70J30, 74F10, 76Q05

Additional Information

Alfredo Bermúdez
Affiliation: Departamento de Matemática Aplicada, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain

Rodolfo Rodríguez
Affiliation: Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile

Keywords: Finite element spectral approximation, elastoacoustic vibrations
Received by editor(s): April 13, 1999
Received by editor(s) in revised form: August 14, 2000
Published electronically: September 17, 2001
Additional Notes: The first author was supported by DGESIC project PB97-0508 (Spain)
The second author was supported by FONDECYT No. 1.990.346 and FONDAP in Applied Mathematics (Chile)
Article copyright: © Copyright 2001 American Mathematical Society