Approximation by quadrilateral finite elements
Authors:
Douglas N. Arnold, Daniele Boffi and Richard S. Falk
Journal:
Math. Comp. 71 (2002), 909922
MSC (2000):
Primary 65N30, 41A10, 41A25, 41A27, 41A63
Published electronically:
March 22, 2002
MathSciNet review:
1898739
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider the approximation properties of finite element spaces on quadrilateral meshes. The finite element spaces are constructed starting with a given finite dimensional space of functions on a square reference element, which is then transformed to a space of functions on each convex quadrilateral element via a bilinear isomorphism of the square onto the element. It is known that for affine isomorphisms, a necessary and sufficient condition for approximation of order in and order in is that the given space of functions on the reference element contain all polynomial functions of total degree at most . In the case of bilinear isomorphisms, it is known that the same estimates hold if the function space contains all polynomial functions of separate degree . We show, by means of a counterexample, that this latter condition is also necessary. As applications, we demonstrate degradation of the convergence order on quadrilateral meshes as compared to rectangular meshes for serendipity finite elements and for various mixed and nonconforming finite elements.
 1.
Philippe
G. Ciarlet, The finite element method for elliptic problems,
NorthHolland Publishing Co., AmsterdamNew YorkOxford, 1978. Studies in
Mathematics and its Applications, Vol. 4. MR 0520174
(58 #25001)
 2.
B.
Nagy, On cosine operator functions in Banach spaces, Acta Sci.
Math. (Szeged) 36 (1974), 281–289. MR 0374995
(51 #11191)
 3.
Herbert
Federer, Geometric measure theory, Die Grundlehren der
mathematischen Wissenschaften, Band 153, SpringerVerlag New York Inc., New
York, 1969. MR
0257325 (41 #1976)
 4.
Vivette
Girault and PierreArnaud
Raviart, Finite element methods for NavierStokes equations,
Springer Series in Computational Mathematics, vol. 5, SpringerVerlag,
Berlin, 1986. Theory and algorithms. MR 851383
(88b:65129)
 5.
F. Kikuchi, M. Okabe, and H. Fujio, Modification of the 8node serendipity element, Comp. Methods Appl. Mech. Engrg. 179 (1999), 91109.
 6.
R. H. McNeal and R. L. Harder, Eight nodes or nine?, Int. J. Numer. Methods Engrg. 33 (1992), 10491058.
 7.
R.
Rannacher and S.
Turek, Simple nonconforming quadrilateral Stokes element,
Numer. Methods Partial Differential Equations 8 (1992),
no. 2, 97–111. MR 1148797
(92i:65170), http://dx.doi.org/10.1002/num.1690080202
 8.
P. Sharpov and Y. Iordanov, Numerical solution of Stokes equations with pressure and filtration boundary conditions, J. Comp. Phys. 112 (1994), 1223.
 9.
G. Strang and G. Fix, A Fourier analysis of the finite element variational method, Constructive Aspects of Functional Analysis (G. Geymonat, ed.), C.I.M.E. II Ciclo, 1971, pp. 793840.
 10.
Jing
Zhang and Fumio
Kikuchi, Interpolation error estimates of a modified 8node
serendipity finite element, Numer. Math. 85 (2000),
no. 3, 503–524. MR 1760933
(2001f:65141), http://dx.doi.org/10.1007/s002110000104
 11.
O. C. Zienkiewicz and R. L. Taylor, The finite element method, fourth edition, volume 1: Basic formulation and linear problems, McGrawHill, London, 1989.
 1.
 P. G. Ciarlet, The finite element method for elliptic problems, NorthHolland, Amsterdam, 1978. MR 58:25001
 2.
 P. G. Ciarlet and P.A. Raviart, Interpolation theory over curved elements with applications to finite element methods, Comput. Methods Appl. Mech. Engrg. 1 (1972), 217249. MR 51:11191
 3.
 H. Federer, Geometric measure theory, SpringerVerlag, New York, 1969. MR 41:1976
 4.
 V. Girault and P.A. Raviart, Finite element methods for NavierStokes equations, SpringerVerlag, New York, 1986. MR 88b:65129
 5.
 F. Kikuchi, M. Okabe, and H. Fujio, Modification of the 8node serendipity element, Comp. Methods Appl. Mech. Engrg. 179 (1999), 91109.
 6.
 R. H. McNeal and R. L. Harder, Eight nodes or nine?, Int. J. Numer. Methods Engrg. 33 (1992), 10491058.
 7.
 R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Meth. Part. Diff. Equations 8 (1992), 97111. MR 92i:65170
 8.
 P. Sharpov and Y. Iordanov, Numerical solution of Stokes equations with pressure and filtration boundary conditions, J. Comp. Phys. 112 (1994), 1223.
 9.
 G. Strang and G. Fix, A Fourier analysis of the finite element variational method, Constructive Aspects of Functional Analysis (G. Geymonat, ed.), C.I.M.E. II Ciclo, 1971, pp. 793840.
 10.
 J. Zhang and F. Kikuchi, Interpolation error estimates of a modified 8node serendipity finite element, Numer. Math. 85 (2000), no. 3, 503524. MR 2001f:65141
 11.
 O. C. Zienkiewicz and R. L. Taylor, The finite element method, fourth edition, volume 1: Basic formulation and linear problems, McGrawHill, London, 1989.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2000):
65N30,
41A10,
41A25,
41A27,
41A63
Retrieve articles in all journals
with MSC (2000):
65N30,
41A10,
41A25,
41A27,
41A63
Additional Information
Douglas N. Arnold
Affiliation:
Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, Minnesota 55455
Email:
arnold@ima.umn.edu
Daniele Boffi
Affiliation:
Dipartimento di Matematica, Università di Pavia, 27100 Pavia, Italy
Email:
boffi@dimat.unipv.it
Richard S. Falk
Affiliation:
Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854
Email:
falk@math.rutgers.edu
DOI:
http://dx.doi.org/10.1090/S0025571802014394
PII:
S 00255718(02)014394
Keywords:
Quadrilateral,
finite element,
approximation,
serendipity,
mixed finite element
Received by editor(s):
March 10, 2000
Published electronically:
March 22, 2002
Article copyright:
© Copyright 2002
American Mathematical Society
