Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Error indicators for the mortar finite element discretization of the Laplace equation


Authors: Christine Bernardi and Frédéric Hecht
Journal: Math. Comp. 71 (2002), 1371-1403
MSC (2000): Primary 65N30; Secondary 65N50, 65N55
DOI: https://doi.org/10.1090/S0025-5718-01-01401-6
Published electronically: December 4, 2001
MathSciNet review: 1933036
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The mortar technique turns out to be well adapted to handle mesh adaptivity in finite elements, since it allows for working with nonnecessarily compatible discretizations on the elements of a nonconforming partition of the initial domain. The aim of this paper is to extend the numerical analysis of residual error indicators to this type of methods for a model problem and to check their efficiency thanks to some numerical experiments.


References [Enhancements On Off] (What's this?)

  • 1. M. Azaïez, C. Bernardi, Y. Maday -- Some tools for adaptivity in the spectral element method, in Proc. of the third Int. Conf. On Spectral And High Order Methods, Houston J. of Math. (1996), 243-253.
  • 2. F. Ben Belgacem -- The Mortar finite element method with Lagrange multipliers, Numer. Math. 84 (1999), 173-197. MR 2001b:65101
  • 3. F. Ben Belgacem, C. Bernardi, N. Chorfi, Y. Maday -- Inf-sup conditions for the mortar spectral element discretization of the Stokes problem, Numer. Math. 85 (2000), 257-281.CMP 2000:12
  • 4. C. Bernardi, V. Girault -- A local regularization operator for triangular and quadrilateral finite elements, SIAM J. Numer. Anal. 35 (1998), 1893-1916. MR 99g:65107
  • 5. C. Bernardi, Y. Maday -- Mesh adaptivity in finite elements by the mortar method, Revue européenne des éléments finis 9 (2000), 451-465.
  • 6. C. Bernardi, Y. Maday, A.T. Patera -- A new nonconforming approach to domain decomposition : the mortar element method, Collège de France Seminar XI, H. Brezis & J.-L. Lions eds., Pitman (1994), 13-51. MR 95a:65201
  • 7. C. Bernardi, Y. Maday, A.T. Patera -- Domain decomposition by the mortar element method, in Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, H.G. Kaper & M. Garbey eds., N.A.T.O. ASI Series C 384 (1993), 269-286. MR 94c:65151
  • 8. C. Bernardi, R.G. Owens, J. Valenciano -- An error indicator for mortar element solutions to the Stokes problem, Internal Report 99030, Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, Paris (1999).
  • 9. C. Bernardi, R. Verfürth -- Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numer. Math. 85 (2000), 579-608. MR 2001e:65177
  • 10. D. Braess, R. Verfürth -- A posteriori error estimators for the Raviart-Thomas element, SIAM J. Numer. Anal. 33 (1996), 2431-2444. MR 97m:65201
  • 11. F. Bouillault, A. Buffa, Y. Maday, F. Rapetti -- The mortar edge element method in three dimensions: application to magnetostatics, Internal Report, Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, Paris (2000).
  • 12. P.G. Ciarlet -- Basic Error Estimates for Elliptic Problems, in the Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet & J.-L. Lions eds., North-Holland (1991), 17-351. CMP 91:14
  • 13. P. Clément -- Approximation by finite element functions using local regularization, R.A.I.R.O. Anal. Numér. 9 (1975), 77-84. MR 53:4569
  • 14. M. Crouzeix -- Personal communication.
  • 15. F. Hecht, O. Pironneau -- Multiple meshes and the implementation of freefem+, I.N.R.I.A. Report, Rocquencourt (1999).
  • 16. P. Joly -- Remise en forme, analyse numérique matricielle, Cours de D.E.A., Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, Paris (1999).
  • 17. J.-L. Lions, E. Magenes -- Problèmes aux limites non homogènes et applications, Vol. 1, Dunod (1968). MR 40:512
  • 18. L.R. Scott, S. Zhang -- Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comput. 54 (1990), 483-493. MR 90j:65021
  • 19. R. Verfürth -- A posteriori error estimators for the Stokes equations, II non-conforming discretizations, Numer. Math. 60 (1991), 235-249. MR 92j:65189
  • 20. R. Verfürth -- A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley & Teubner (1996).
  • 21. R. Verfürth -- Error estimates for some quasi-interpolation operators, Modél. Math. et Anal. Numér. 33 (1999), 695-713.
  • 22. O.B. Widlund -- An extension theorem for finite element spaces with three applications, in Numerical Techniques in Continuum Mechanics, Proceedings of the Second GAMM Seminar, W. Hackbush & K. Witsch eds., Kiel (1986).
  • 23. B. Wohlmuth -- A residual based error estimator for mortar finite element discretizations, Numer. Math. 84 (1999), 143-171. MR 2000h:65155

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 65N50, 65N55

Retrieve articles in all journals with MSC (2000): 65N30, 65N50, 65N55


Additional Information

Christine Bernardi
Affiliation: Analyse Numérique, C.N.R.S. et Université Pierre et Marie Curie, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France
Email: bernardi@ann.jussieu.fr

Frédéric Hecht
Affiliation: Analyse Numérique, C.N.R.S. et Université Pierre et Marie Curie, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France
Email: hecht@ann.jussieu.fr

DOI: https://doi.org/10.1090/S0025-5718-01-01401-6
Received by editor(s): April 4, 2000
Received by editor(s) in revised form: October 10, 2000
Published electronically: December 4, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society