Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Error indicators for the mortar finite element discretization of the Laplace equation


Authors: Christine Bernardi and Frédéric Hecht
Journal: Math. Comp. 71 (2002), 1371-1403
MSC (2000): Primary 65N30; Secondary 65N50, 65N55
Published electronically: December 4, 2001
MathSciNet review: 1933036
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The mortar technique turns out to be well adapted to handle mesh adaptivity in finite elements, since it allows for working with nonnecessarily compatible discretizations on the elements of a nonconforming partition of the initial domain. The aim of this paper is to extend the numerical analysis of residual error indicators to this type of methods for a model problem and to check their efficiency thanks to some numerical experiments.


References [Enhancements On Off] (What's this?)

  • 1. M. Azaïez, C. Bernardi, Y. Maday -- Some tools for adaptivity in the spectral element method, in Proc. of the third Int. Conf. On Spectral And High Order Methods, Houston J. of Math. (1996), 243-253.
  • 2. Faker Ben Belgacem, The mixed mortar finite element method for the incompressible Stokes problem: convergence analysis, SIAM J. Numer. Anal. 37 (2000), no. 4, 1085–1100 (electronic). MR 1756416 (2001b:65101), http://dx.doi.org/10.1137/S0036142997329220
  • 3. F. Ben Belgacem, C. Bernardi, N. Chorfi, Y. Maday -- Inf-sup conditions for the mortar spectral element discretization of the Stokes problem, Numer. Math. 85 (2000), 257-281.CMP 2000:12
  • 4. C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements, SIAM J. Numer. Anal. 35 (1998), no. 5, 1893–1916 (electronic). MR 1639966 (99g:65107), http://dx.doi.org/10.1137/S0036142995293766
  • 5. C. Bernardi, Y. Maday -- Mesh adaptivity in finite elements by the mortar method, Revue européenne des éléments finis 9 (2000), 451-465.
  • 6. C. Bernardi, Y. Maday, and A. T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol.\ XI (Paris, 1989–1991) Pitman Res. Notes Math. Ser., vol. 299, Longman Sci. Tech., Harlow, 1994, pp. 13–51. MR 1268898 (95a:65201)
  • 7. C. Bernardi, Y. Maday, and A. T. Patera, Domain decomposition by the mortar element method, Asymptotic and numerical methods for partial differential equations with critical parameters (Beaune, 1992) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 384, Kluwer Acad. Publ., Dordrecht, 1993, pp. 269–286. MR 1222428 (94c:65151)
  • 8. C. Bernardi, R.G. Owens, J. Valenciano -- An error indicator for mortar element solutions to the Stokes problem, Internal Report 99030, Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, Paris (1999).
  • 9. C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numer. Math. 85 (2000), no. 4, 579–608 (English, with English and French summaries). MR 1771781 (2001e:65177), http://dx.doi.org/10.1007/PL00005393
  • 10. D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element, SIAM J. Numer. Anal. 33 (1996), no. 6, 2431–2444. MR 1427472 (97m:65201), http://dx.doi.org/10.1137/S0036142994264079
  • 11. F. Bouillault, A. Buffa, Y. Maday, F. Rapetti -- The mortar edge element method in three dimensions: application to magnetostatics, Internal Report, Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, Paris (2000).
  • 12. P.G. Ciarlet -- Basic Error Estimates for Elliptic Problems, in the Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet & J.-L. Lions eds., North-Holland (1991), 17-351. CMP 91:14
  • 13. Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. \jname RAIRO Analyse Numérique 9 (1975), no. R-2, 77–84 (English, with Loose French summary). MR 0400739 (53 #4569)
  • 14. M. Crouzeix -- Personal communication.
  • 15. F. Hecht, O. Pironneau -- Multiple meshes and the implementation of freefem+, I.N.R.I.A. Report, Rocquencourt (1999).
  • 16. P. Joly -- Remise en forme, analyse numérique matricielle, Cours de D.E.A., Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, Paris (1999).
  • 17. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 0247243 (40 #512)
  • 18. L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446 (90j:65021), http://dx.doi.org/10.1090/S0025-5718-1990-1011446-7
  • 19. R. Verfürth, A posteriori error estimators for the Stokes equations. II. Nonconforming discretizations, Numer. Math. 60 (1991), no. 2, 235–249. MR 1133581 (92j:65189), http://dx.doi.org/10.1007/BF01385723
  • 20. R. Verfürth -- A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley & Teubner (1996).
  • 21. R. Verfürth -- Error estimates for some quasi-interpolation operators, Modél. Math. et Anal. Numér. 33 (1999), 695-713.
  • 22. O.B. Widlund -- An extension theorem for finite element spaces with three applications, in Numerical Techniques in Continuum Mechanics, Proceedings of the Second GAMM Seminar, W. Hackbush & K. Witsch eds., Kiel (1986).
  • 23. Barbara I. Wohlmuth, A residual based error estimator for mortar finite element discretizations, Numer. Math. 84 (1999), no. 1, 143–171. MR 1724340 (2000h:65155), http://dx.doi.org/10.1007/s002110050467

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 65N50, 65N55

Retrieve articles in all journals with MSC (2000): 65N30, 65N50, 65N55


Additional Information

Christine Bernardi
Affiliation: Analyse Numérique, C.N.R.S. et Université Pierre et Marie Curie, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France
Email: bernardi@ann.jussieu.fr

Frédéric Hecht
Affiliation: Analyse Numérique, C.N.R.S. et Université Pierre et Marie Curie, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France
Email: hecht@ann.jussieu.fr

DOI: http://dx.doi.org/10.1090/S0025-5718-01-01401-6
PII: S 0025-5718(01)01401-6
Received by editor(s): April 4, 2000
Received by editor(s) in revised form: October 10, 2000
Published electronically: December 4, 2001
Article copyright: © Copyright 2001 American Mathematical Society