Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Stabilized hybrid finite element methods based on the combination of saddle point principles of elasticity problems


Author: Tianxiao Zhou
Journal: Math. Comp. 72 (2003), 1655-1673
MSC (2000): Primary 65N12, 65N30
DOI: https://doi.org/10.1090/S0025-5718-03-01473-X
Published electronically: April 28, 2003
MathSciNet review: 1986798
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: How, in a discretized model, to utilize the duality and complementarity of two saddle point variational principles is considered in the paper. A homology family of optimality conditions, different from the conventional saddle point conditions of the domain-decomposed Hellinger-Reissner principle, is derived to enhance stability of hybrid finite element schemes. Based on this, a stabilized hybrid method is presented by associating element-interior displacement with an element-boundary one in a nonconforming manner. In addition, energy compatibility of strain-enriched displacements with respect to stress terms is introduced to circumvent Poisson-locking.


References [Enhancements On Off] (What's this?)

  • 1. Brezzi F., Fortin, M: Mixed and hybrid finite element methods. Springer-Verlag, 1991. MR 92d:65187
  • 2. Ciarlet P. G.: The Finite Element Method for Elliptic Problems: North-Holland, Amsterdam, 1978. MR 58:25001
  • 3. Bochev P. B., Gunzburger M. D.: Finite element methods of least-squares type, SIAM Review 40 (1998), 789-837. MR 99k:65104
  • 4. Franca L. P., Highes T. J. R.: Two classes of mixed finite element methods. Comput. Methods Appl. Mech. Engrg. 69 (1988), 89-129. MR 90b:65202
  • 5. Hughes T. J. R., France L. P., Balestra M.: A new finite element formulation of computational fluid dynamics, a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Engrg. 59 (1986), 85-99. MR 89j:76015d; MR 89j:76015e
  • 6. Kang D. S., Pian T. H. H.: A 20-DOF hybrid general shell element. Comput. Struct. 30 (1988), 789-794.
  • 7. Mikhlin S. G.: The problem of the minimum of a quadratic functional. Holden-Day, San Francisco, London, Amsterdam, 1965. MR 30:1427
  • 8. Pehlivanov A. I., Carey G. F., Vassilevski P. S.: Least-squares mixed finite element methods for non-selfadjoint elliptic problem: I. Error estimates. Numer. Math. 72 (1996), 501-522. MR 97f:65068
  • 9. Pian T. H. H., Sumihara K.: Rational approach for assumed stress finite elements. Inter. J. Numer. Meth. Engrg. 20 (1984), 1685-1695.
  • 10. Pian T. H. H., Wu C.-C.: A rational approach for choosing stress terms for hybrid finite element formulations. Internat. J. Numer. Meth. Engrg. 26 (1988), 2331-2343. MR 89f:73052
  • 11. Piltner P., Taylor, R. L.: A quadrilateral mixed finite element with two enhanced strain modes. Internat. J. Numer. Meth. Engrg. 38 (1995), 1783-1808. MR 96a:73062
  • 12. Piltner R., Taylor R. L.: A systematic construction of $\mathbf{B}$-bar functions for linear and nonlinear mixed-enhanced finite elements for plane elasticity problems. Internat. J. Numer. Meth. Engrg. 44 (1999), 615-639. MR 99j:73099
  • 13. Reddy B. D., Simo J. C.: Stability and convergence of a class of enhanced strain methods, SIAM J. Numer. Anal. 32 (1995), 1705-1728. MR 96k:73082a
  • 14. Simo J. C., Rifai M. S.: A class of mixed assumed strain methods and the method of incompatible modes. Internat. J. Numer. Meth. Engrg. 29 (1990), 1595-1638. MR 91d:73062
  • 15. Shi. Z.-C.: A convergence condition for the quadrilateral Wilson element. Numer. Math. 44 (1984), 349-361. MR 86d:65151
  • 16. Zhou T.-X.: Equivalency theorem for ``saddle point'' finite element schemes and two criteria of strong Babuska-Brezzi condition. Sci. Sinica 24 (1981), 1190-1206. MR 83e:65182
  • 17. Zhou T.-X.: Mixed stiffness finite element (I) (II), Sci. Sinica Ser. A 29 (1986), 1233-1251; 30 (1987), 1-11. MR 88h:65221; MR 88h:65222
  • 18. Zhou T.-X.: Finite element method based on combination of ``saddle point'' variational formulations. Sci. China Ser. E 40 (1997), 285-300. MR 98e:65103
  • 19. Zhou T.-X., Nie Y.-F.: Combined hybrid approach to finite element schemes of high performance. Internat. J. Numer. Meth. Engrg. 50 (2001), 181-202. MR 2002a:74125

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N12, 65N30

Retrieve articles in all journals with MSC (2000): 65N12, 65N30


Additional Information

Tianxiao Zhou
Affiliation: Aeronautical Computing Technology Research Institute, Xi’an 710068, Peoples Republic of China
Email: txzhou@163.net

DOI: https://doi.org/10.1090/S0025-5718-03-01473-X
Received by editor(s): October 13, 1999
Received by editor(s) in revised form: March 7, 2001
Published electronically: April 28, 2003
Additional Notes: This work was subsidized by the Special Funds for Major State Basic Research Projects (G1999032801) and the Funds for Aeronautics (00B31005)
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society