On the total number of prime factors of an odd perfect number

Authors:
D. E. Iannucci and R. M. Sorli

Journal:
Math. Comp. **72** (2003), 2077-2084

MSC (2000):
Primary 11A25, 11Y70

Published electronically:
May 8, 2003

MathSciNet review:
1986824

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We say is *perfect* if , where denotes the sum of the positive divisors of . No odd perfect numbers are known, but it is well known that if such a number exists, it must have prime factorization of the form , where , , ..., are distinct primes and . We prove that if or for all , , then . We also prove as our main result that , where . This improves a result of Sayers given in 1986.

**[1]**N. C. Ankeny,*One more proof of the fundamental theorem of algebra*, Amer. Math. Monthly**54**(1947), 464. MR**0021624****[2]**E. Z. Chein, Ph.D. Thesis, Pennsylvania State University (1979).**[3]**G. L. Cohen,*On the total number of prime factors of an odd perfect number*Appendix A.3, Ph.D. Thesis, University of New South Wales (1982).**[4]**Graeme L. Cohen,*On the largest component of an odd perfect number*, J. Austral. Math. Soc. Ser. A**42**(1987), no. 2, 280–286. MR**869751****[5]**G. L. Cohen and R. J. Williams,*Extensions of some results concerning odd perfect numbers*, Fibonacci Quart.**23**(1985), no. 1, 70–76. MR**786364****[6]**Peter Hagis Jr.,*Outline of a proof that every odd perfect number has at least eight prime factors*, Math. Comp.**35**(1980), no. 151, 1027–1032. MR**572873**, 10.1090/S0025-5718-1980-0572873-9**[7]**Peter Hagis Jr.,*Sketch of a proof that an odd perfect number relatively prime to 3 has at least eleven prime factors*, Math. Comp.**40**(1983), no. 161, 399–404. MR**679455**, 10.1090/S0025-5718-1983-0679455-1**[8]**Hans-Joachim Kanold,*Sätze über Kreisteilungspolynome und ihre Anwendungen auf einige zahlentheoretische Probleme. II*, J. Reine Angew. Math.**188**(1950), 129–146 (German). MR**0044579****[9]**Masao Kishore,*Odd perfect numbers not divisible by 3. II*, Math. Comp.**40**(1983), no. 161, 405–411. MR**679456**, 10.1090/S0025-5718-1983-0679456-3**[10]**Wayne L. McDaniel,*The non-existence of odd perfect numbers of a certain form*, Arch. Math. (Basel)**21**(1970), 52–53. MR**0258723****[11]**Wayne L. McDaniel,*On the divisibility of an odd perfect number by the sixth power of a prime*, Math. Comp.**25**(1971), 383–385. MR**0296013**, 10.1090/S0025-5718-1971-0296013-3**[12]**M. Sayers, M.App.Sc. Thesis, New South Wales Institute of Technology (1986).**[13]**R. Steuerwald,*Verschärfung einer notwendigen Bedingung für die Existenz einer ungeraden vollkommenen Zahl*S.-B. Math.-Nat. Abt. Bayer. Akad. Wiss. (1937), 68-73.

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11A25,
11Y70

Retrieve articles in all journals with MSC (2000): 11A25, 11Y70

Additional Information

**D. E. Iannucci**

Affiliation:
University of the Virgin Islands, St. Thomas, Virgin Islands 00802

Email:
diannuc@uvi.edu

**R. M. Sorli**

Affiliation:
Department of Mathematical Sciences, University of Technology, Sydney, Broadway, 2007, Australia

Email:
rons@maths.uts.edu.au

DOI:
http://dx.doi.org/10.1090/S0025-5718-03-01522-9

Keywords:
Odd perfect numbers,
factorization

Received by editor(s):
November 7, 2001

Published electronically:
May 8, 2003

Additional Notes:
The authors are grateful for the advice and assistance given by Graeme Cohen

Article copyright:
© Copyright 2003
American Mathematical Society