Numerical solution of the elastic body-plate problem by nonoverlapping domain decomposition type techniques

Author:
Jianguo Huang

Journal:
Math. Comp. **73** (2004), 19-34

MSC (2000):
Primary 65N30, 65N22, 65F10, 74S05

DOI:
https://doi.org/10.1090/S0025-5718-03-01532-1

Published electronically:
May 7, 2003

MathSciNet review:
2034109

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to provide two numerical methods for solving the elastic body-plate problem by nonoverlapping domain decomposition type techniques, based on the discretization method by Wang. The first one is similar to an older method, but here the corresponding Schur complement matrix is preconditioned by a specific preconditioner associated with the plate problem. The second one is a ``displacement-force'' type Schwarz alternating method. At each iteration step of the two methods, either a pure body or a pure plate problem needs to be solved. It is shown that both methods have a convergence rate independent of the size of the finite element mesh.

**1.**I. Babuska and A. Aziz,*Survey lectures on the mathematical foundations of the finite element method,*in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz eds., Academic Press, New York and London, 1972. MR**54:9111****2.**M. Bernadou, S. Fayolle and F. Lene,*Numerical analysis of junctions between plates,*Comput. Methods Appl. Mech. Engrg., 74(1989), pp. 307-326. MR**90j:73062****3.**P. E. Bjørstad and O. B. Widlund,*Iterative method for the solution of elliptic problems on regions partitioned into substructures,*SIAM J. Numer. Anal., 23(1986), pp. 1097-1120. MR**88h:65188****4.**H. Blum and R. Rannacher,*On the boundary value problem of the biharmonic operators on domains with angular corners,*Math. Meth. Appl. Sci., 2(1980), pp. 556-581. MR**82a:35022****5.**J. H. Bramble, J. E. Pasciak and A. H. Schatz,*An iterative method for elliptic problems on regions partitioned into substructures,*Math. Comp., 46(1986), pp. 361-369. MR**88a:65123****6.**J. H. Bramble, J. E. Pasciak and A. H. Schatz,*The construction of preconditioners for elliptic problems by substructuring, I,*Math. Comp., 47(1986), pp. 103-134. MR**87m:65174****7.**S. C. Brenner,*A two-level Schwarz preconditioner for nonconforming plate elements,*in Domain Decomposition Methods in Scientific Computing (Proceedings of DDM 7) eds. David E. Keyes and Jinchao Xu, 1994, Contemp. Math. 180, pp. 9-14. MR**95j:65134****8.**S. C. Brenner,*Two-level additive Schwarz preconditioners for nonconforming finite element methods,*Math. Comp., 65(1996), pp. 897-921. MR**96j:65117****9.**S. C. Brenner,*A two-level additive Schwarz preconditioner for nonconforming plate elements,*Numer. Math., 72(1996), pp. 419-447. MR**97h:65147****10.**T. F. Chan and T. Mathew,*Domain decomposition algorithms,*Acta Numerica, 2(1994), pp. 61-143. MR**95f:65214****11.**P. G. Ciarlet,*The Finite Element Method for Elliptic Problems,*North-Holland, Amsterdam, 1978. MR**58:25001****12.**P. G. Ciarlet,*Plate and Junctions in Elastic Multi-structures,*Springer-Verlag, Berlin-Heiderberg-New York, 1990. MR**91h:73004****13.**M. Dryja and O. B. Widlund,*Towards a unified theory of domain decomposition algorithms for elliptic problem,*in Third International Symposium on Domain Decomposition Methods for PDE (eds T. F. Chan et al), SIAM, Philadelphia, 1990, 3-21 MR**91m:65294****14.**K. Feng,*Elliptic equations on composite manifold and composite elastic structures*(in Chinese), Math. Numer. Sinica, 1(1979), pp. 199-208. MR**83m:49041****15.**K. Feng and Z. Shi,*Mathematical Theory of Elastic Structures*(in Chinese), Science Presss, Beijing, 1981. (English translation, Springer-Verlag & Science Press, Berlin-New York, 1995.) MR**84f:73001**; MR**97b:73001****16.**G. H. Golub and C. F. Van Loan,*Matrix computation (2nd edn).,*The Johns Hopkins University Press, Baltimore, 1989. MR**90d:65055****17.**P. G. Grisvard,*Singularities in Boundary Value Problems,*Springer-Verlag, Berlin-Heidelberg-New York, 1992. MR**93h:35004****18.**F. d'Hennezel,*Domain decomposition method and elastic multi-structures: the stiffened plate problem,*Numer. Math., 66(1993), pp. 181-197. MR**95c:73080****19.**L. D. Marini and A. Quarteroni,*A relaxation procedure for domain decomposition methods using finite elements,*Numer. Math., 55(1989), pp. 575-598. MR**90g:65150****20.**J. Necas,*Les Méthodes Directes en Théorie des Équations Elliptiques,*Masson, Paris, 1967. MR**37:3168****21.**A. Quarteroni, G. S. Landriani and A. Valli,*Coupling of viscous and inviscid Stokes equations via a domain decomposition method for finite elements,*Numer. Math., 59(1991), pp. 831-859. MR**93b:65190****22.**F. Stummel,*The generalized patch test,*SIAM J. Numer. Anal., 16(1979), pp. 199-208. MR**80e:65106****23.**F. Stummel,*Basic compactness properties of nonconforming and hybrid finite element spaces*, RAIRO Anal. Numer., 4(1980), pp. 81-115. MR**81h:65058****24.**L. Wang,*The mathematical models of some composite elastic structures and their finite element approximations*(in Chinese), Numer. Math. Sinica, 14(1992), pp. 358-370.**25.**L. Wang,*An analysis of the TRUNC elements for coupled plates with rigid junction,*Comput. Methods Appl. Mech. Engrig., 121(1995), pp. 1-14. MR**96b:73105****26.**J. Xu,*Theory of multilevel methods,*Ph. D. thesis, Cornell University, 1989.**27.**J. Xu and J. Zou,*Non-overlapping domain decomposition methods,*SIAM Review, 40(1998), pp. 857-914. MR**99m:65241**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
65N30,
65N22,
65F10,
74S05

Retrieve articles in all journals with MSC (2000): 65N30, 65N22, 65F10, 74S05

Additional Information

**Jianguo Huang**

Affiliation:
Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, Peoples Republic of China

Email:
jghuang@online.sh.cn

DOI:
https://doi.org/10.1090/S0025-5718-03-01532-1

Keywords:
Nonoverlapping domain decomposition method,
preconditioner,
elastic multi-structures,
finite element

Received by editor(s):
December 1, 1997

Received by editor(s) in revised form:
May 26, 2002

Published electronically:
May 7, 2003

Additional Notes:
The work was partially supported by the National Natural Science Foundation of China under grant no. 19901018

Article copyright:
© Copyright 2003
American Mathematical Society