Korn's inequalities for piecewise vector fields

Author:
Susanne C. Brenner

Journal:
Math. Comp. **73** (2004), 1067-1087

MSC (2000):
Primary 65N30, 74S05

DOI:
https://doi.org/10.1090/S0025-5718-03-01579-5

Published electronically:
September 26, 2003

MathSciNet review:
2047078

Full-text PDF

View in AMS MathViewer

Abstract | References | Similar Articles | Additional Information

Abstract: Korn's inequalities for piecewise vector fields are established. They can be applied to classical nonconforming finite element methods, mortar methods and discontinuous Galerkin methods.

**1.**J.H. Bramble and S.R. Hilbert.

Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation.*SIAM J. Numer. Anal.*, 7:113-124, 1970. MR**41:7819****2.**S.C. Brenner.

Poincaré-Friedrichs inequalities for piecewise functions.*SIAM J. Numer. Anal.*41: 306-324, 2003 (electronic).**3.**S.C. Brenner and L.R. Scott.*The Mathematical Theory of Finite Element Methods**Second Edition*.

Springer-Verlag, New York-Berlin-Heidelberg, 2002. MR**2003a:65103****4.**P.G. Ciarlet.*The Finite Element Method for Elliptic Problems*.

North-Holland, Amsterdam, 1978. MR**58:25001****5.**P.G. Ciarlet.*Mathematical Elasticity Volume I: Three-Dimensional Elasticity*.

North-Holland, Amsterdam, 1988. MR**89e:73001****6.**B. Cockburn, G.E. Karniadakis, and C.-W. Shu, editors.*Discontinuous Galerkin Methods*.

Springer-Verlag, Berlin-Heidelberg, 2000. MR**2002b:65004****7.**J. Dieudonné.*Foundations of Modern Analysis*.

Pure and Applied Mathematics, Vol. X. Academic Press, New York, 1960.MR**22:11074****8.**G. Duvaut and J.L. Lions.*Inequalities in Mechanics and Physics*.

Springer-Verlag, Berlin, 1976. MR**58:25191****9.**R.S. Falk.

Nonconforming finite element methods for the equations of linear elasticity.*Math. Comp.*, 57:529-550, 1991. MR**92a:65290****10.**M. Fortin.

A three-dimensional quadratic nonconforming element.*Numer. Math.*, 46:269-279, 1985. MR**86f:65192****11.**M. Fortin and M. Soulie.

A non-conforming piecewise quadratic finite element on triangles.*Internat. J. Numer. Methods Engrg.*, 19:505-520, 1983. MR**84g:76004****12.**P. Hansbo and M.G. Larson.

Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method.*Comput. Methods Appl. Mech. Engrg.*, 191:1895-1908, 2002.**13.**P. Knobloch.

On Korn's inequality for nonconforming finite elements.*Technische Mechanik*, 20:205-214 and 375 (Errata), 2000.**14.**J.A. Nitsche.

On Korn's second inequality.*RAIRO Anal. Numér.*, 15:237-248, 1981. MR**83a:35012****15.**Ch. Schwab.

-FEM for fluid flow simulation.

In T.J. Barth and H. Deconinck, editors,*High-Order Methods for Computational Physics*, pages 325-438. Springer-Verlag, Berlin-Heidelberg, 1999.MR**2000k:76093****16.**M. Wang.

The generalized Korn inequality on nonconforming finite element spaces.*Chinese J. Numer. Math. Appl.*, 16:91-96, 1994. MR**98a:65166****17.**E.L. Wilson, R.L. Taylor, W. Doherty, and J. Ghaboussi.

Incompatible displacement models.

In S.J. Fenves, N. Perrone, A.R. Robinson, and W.C. Schnobrich, editors,*Numerical and Computer Methods in Structural Mechanics*, pages 43-57. Academic Press, New York, 1973.**18.**B.I. Wohlmuth.*Discretization Methods and Iterative Solvers Based on Domain Decomposition*.

Springer-Verlag, Heidelberg, 2001.MR**2002c:65231****19.**X. Xu.

A discrete Korn's inequality in two and three dimensions.*Appl. Math. Letters*, 13:99-102, 2000.MR**2000m:74087****20.**Z. Zhang.

Analysis of some quadrilateral nonconforming elements for incompressible elasticity.

*SIAM J. Numer. Anal.*, 34:640-663, 1997.MR**98b:73041**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
65N30,
74S05

Retrieve articles in all journals with MSC (2000): 65N30, 74S05

Additional Information

**Susanne C. Brenner**

Affiliation:
Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208

Email:
brenner@math.sc.edu

DOI:
https://doi.org/10.1090/S0025-5718-03-01579-5

Keywords:
Korn's inequalities,
piecewise $H^1$ vector fields,
nonconforming finite elements,
mortar methods,
discontinuous Galerkin methods

Received by editor(s):
March 19, 2002

Received by editor(s) in revised form:
December 14, 2002

Published electronically:
September 26, 2003

Additional Notes:
This work was supported in part by the National Science Foundation under Grant No. DMS-00-74246.

Article copyright:
© Copyright 2003
American Mathematical Society