Multivariate refinable Hermite interpolant

Authors:
Bin Han, Thomas P.-Y. Yu and Bruce Piper

Translated by:

Journal:
Math. Comp. **73** (2004), 1913-1935

MSC (2000):
Primary 41A05, 41A15, 41A63, 42C40, 65T60, 65F15

DOI:
https://doi.org/10.1090/S0025-5718-03-01623-5

Published electronically:
December 22, 2003

MathSciNet review:
2059743

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a general definition of refinable Hermite interpolants and investigate their general properties. We also study a notion of symmetry of these refinable interpolants. Results and ideas from the extensive theory of general refinement equations are applied to obtain results on refinable Hermite interpolants. The theory developed here is constructive and yields an easy-to-use construction method for multivariate refinable Hermite interpolants. Using this method, several new refinable Hermite interpolants with respect to different dilation matrices and symmetry groups are constructed and analyzed.

Some of the Hermite interpolants constructed here are related to well-known spline interpolation schemes developed in the computer-aided geometric design community (e.g., the Powell-Sabin scheme). We make some of these connections precise. A spline connection allows us to determine critical Hölder regularity in a trivial way (as opposed to the case of general refinable functions, whose critical Hölder regularity exponents are often difficult to compute).

While it is often mentioned in published articles that ``refinable functions are important for subdivision surfaces in CAGD applications", it is rather unclear whether an arbitrary refinable function vector can be meaningfully applied to build free-form subdivision surfaces. The bivariate symmetric refinable Hermite interpolants constructed in this article, along with algorithmic developments elsewhere, give an application of vector refinability to subdivision surfaces. We briefly discuss several potential advantages offered by such Hermite subdivision surfaces.

**1.**C. de Boor,*A practical guide to splines*, Applied Mathematical Sciences, no. 27, Springer-Verlag, New York, 1978. MR**80a:65027****2.**G.C. Donovan, J.S. Geronimo, D.P. Hardin, and P.R. Massopust,*Construction of orthogonal wavelets using fractal interpolation functions*, SIAM J. Math. Anal.**27**(1996), no. 4, 1158-92. MR**97f:42053****3.**S. Mallat,*A theory for multiresolution signal decomposition: The wavelet representation*, IEEE Trans. on Patt. Anal. and Mach. Intell.**11**(1989), no. 7, 674-693.**4.**Y. Meyer,*Wavelets and operators*, Cambridge University Press, 1992. MR**94f:42001****5.**G. Strang and V. Strela,*Short wavelets and matrix dilation equations*, IEEE Trans. on Signal Process. (1995), 108-115.**6.**R. E. Barnhill and J. A. Gregory,*Polynomial interpolation to boundary data on triangles*, Math. Comp.**29**(1975), no. 131, 726-735. MR**51:11925****7.**J. V. Burke, A. S. Lewis, and M. L. Overton,*Two numerical methods for optimizing matrix stability*, Linear Algebra Appl.**351/352**(2002), 117-145. MR**2003f:93066****8.**C. Cabrelli, C. Heil, and U. Molter,*Accuracy of lattice translates of several multidimensional refinable functions*, J. Approx. Th.**95**(1998), no. 1, 5-52.MR**99g:42038****9.**E. Catmull and J. Clark,*Recurssive generated B-spline surfaces on arbitrary topological meshes*, Comp. Aid. Geom. Des.**10**(1978), no. 6, 350-355.**10.**A.S. Cavaretta, W. Dahmen, and C.A. Micchelli,*Stationary subdivision*, Mem. Amer. Math. Soc.**453**(1991), Amer. Math. Soc, Providence. MR**92h:65017****11.**D.-R. Chen, R. Q. Jia, and S. D. Riemenschneider,*Convergence of vector subdivision schemes in sobolev spaces*, Appl. Comput. Harmon. Anal.**12**(2002), no. 1, 128-149. MR**2002k:65220****12.**C. de Boor, Personal Communication, 2001.**13.**C. de Boor,*Multivariate piecewise polynimials*, Acta Numerica (1993), 65-109.**14.**D. Doo and M. Sabin,*Analysis of the behavoir of recursive division surfaces near extraordinary points*, Comp. Aid. Geom. Des.**10**(1978), no. 6, 356-360.**15.**S. Dubuc and J. L. Merrien,*Dyadic Hermite interpolants on a rectangular mesh*, Adv. Comp. Math.**10**(1999), no. 3-4, 343-365.MR**2000b:41004****16.**N. Dyn and D. Levin,*Analysis of Hermite-interpolatory subdivision schemes*, Spline Functions and the Theory of Wavelets (S. Dubuc and G. Deslauriers, eds.), 1999, CRM (Centre de Recherches Mathématiques, Université de Montréal) Proceedings & Lectures Notes, Volume 18, pp. 105-113.MR**99j:42040****17.**N. Dyn, D. Levin, and J. A. Gregory,*A butterfly subdivision scheme for surface interpolation with tension control*, ACM Trans. Graph.**9**(1990), no. 2.**18.**N. Dyn and T. Lyche,*Hermite subdivision scheme for the evaluation of the Powell-Sabin -split element*, Approximation Theory IX (C. Chui and L.L. Schmaker, eds.), 1999, pp. 1-6.**19.**G. Farin,*Triangular Bernstein-Bézier patches*, Comp. Aid. Geom. Des.**3**(1986), 83-127. MR**87k:65014****20.**B. Han,*Hermite interpolants and biorthogonal multiwavelets with arbitrary order of vanishing moments*, Proc. SPIE**3813**, Wavelet Applications in Signal and Image Processing VII (A. Aldroubi M. A. Unser and A. F. Laine, eds.), 1999, pp. 147-161. MR**2000m:42032****21.**-,*Analysis and construction of optimal multivariate biorthogonal wavelets with compact support*, SIAM J. Math. Anal.**31**(2000), no. 2, 274-304. MR**2000m:42032****22.**-,*Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets*, J. Approx. Theory**110**(2001), no. 1, 18-53. MR**2002e:41008****23.**-,*The initial functions in a cascade algorithm*, Wavelet Analysis: Twenty Years' Developments, Proceedings of International Conference on Computational Harmonic Analysis (D.X. Zhou, ed.), 2002, pp. 154-178.**24.**-,*Vector cascade algorithms and refinable function vectors in Sobolev spaces*, Preprint, available at`http://www.ualberta.ca/~bhan/publ.htm`

, July 2002.**25.**-,*Computing the smoothness exponent of a symmetric multivariate refinable function*, SIAM J. Matrix Anal. and Appl.**24**(2003), no. 3, 693-714.**26.**B. Han, M. Overton, and T. P.-Y. Yu,*Design of Hermite subdivision schemes aided by spectral radius optimization*, SIAM J. Sci. Comput.**25**(2003), no. 2, 643-656.**27.**R. Q. Jia,*Approximation properties of multivariate wavelets*, Math. Comp.**67**(1998), no. 222, 647-665. MR**98g:41020****28.**R. Q. Jia and Q. T. Jiang,*Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets*, SIAM J. Matrix Anal. and Appl.**24**(2003), no. 4, 1071-1109.**29.**J. M. Lane and R. F. Risenfeld,*A theoretical development for the computer generation and display of piecewise polynomial functions*, IEEE Trans. on Patt. Anal. and Mach. Intell.**2**(1980), no. 1, 35-46.**30.**J. L. Merrien,*A family of Hermite interpolants by bisection algorithms*, Numer. Alg.**2**(1992), 187-200. MR**93b:41005****31.**-,*Dyadic Hermite interpolants on a triangulation*, Numer. Alg.**7**(1994), no. 2-4, 391-410. MR**95c:41012****32.**M. J. D. Powell and M. A. Sabin,*Piecewise quadratic approximations on triangles*, ACM Trans. Math. Software**3**(1977), 316-325. MR**58:3319****33.**A. Ron,*Smooth refinable functions provide good approximation orders*, SIAM J. Math. Anal.**28**(1997), no. 3, 511-523. MR**98g:42057****34.**N. S. Sapidis,*Designing fair curves and surfaces: Shape quality in geometric modeling and computer-aided design*, SIAM, 1994. MR**95m:65035****35.**J. Warren and H. Weimer,*Subdivision methods for geometric design: A constructive approach*, Morgan Kaufmann, 2001.**36.**T. P.-Y. Yu,*Approximation order/smoothness tradeoff in Hermite subdivision schemes*, Proc. SPIE, Wavelets: Applications in Signal and Image Processing IX (A. F. Laine, M. A. Unser, and A. Aldroubi, eds.), vol. 4478, 2001, pp. 117-128.**37.**-,*Hermite subdivision surfaces: Applications of vector refinability to free-form surfaces*, In preparation, 2001.**38.**D. X. Zhou,*Multiple refinable Hermite interpolants*, J. Approx. Theory**102**(2000), 46-71. MR**2000k:41026**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
41A05,
41A15,
41A63,
42C40,
65T60,
65F15

Retrieve articles in all journals with MSC (2000): 41A05, 41A15, 41A63, 42C40, 65T60, 65F15

Additional Information

**Bin Han**

Affiliation:
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Email:
bhan@ualberta.ca

**Thomas P.-Y. Yu**

Affiliation:
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180-3590

Email:
yut@rpi.edu

**Bruce Piper**

Affiliation:
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180-3590

Email:
piperb@rpi.edu

DOI:
https://doi.org/10.1090/S0025-5718-03-01623-5

Keywords:
Hermite interpolation,
refinable function,
vector refinability,
subdivision scheme,
shift invariant subspace,
multivariate spline,
Bernstein-B\'ezier form,
wavelet,
subdivision surface

Received by editor(s):
January 22, 2002

Received by editor(s) in revised form:
March 27, 2003

Published electronically:
December 22, 2003

Article copyright:
© Copyright 2003
American Mathematical Society