Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On tractability of weighted integration over bounded and unbounded regions in $\mathbb{R}^s$


Authors: Fred J. Hickernell, Ian H. Sloan and Grzegorz W. Wasilkowski
Translated by:
Journal: Math. Comp. 73 (2004), 1885-1901
MSC (2000): Primary 65D05, 65D30, 65Y20, 62M20, 60G25
DOI: https://doi.org/10.1090/S0025-5718-04-01624-2
Published electronically: January 5, 2004
MathSciNet review: 2059741
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that for the space of functions with mixed first derivatives bounded in $L_1$ norm, the weighted integration problem over bounded or unbounded regions is equivalent to the corresponding classical integration problem over the unit cube, provided that the integration domain and weight have product forms. This correspondence yields tractability of the general weighted integration problem.


References [Enhancements On Off] (What's this?)

  • 1. M.Drmota and R.F.Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997. MR 98j:11057
  • 2. S.Heinrich, E.Novak, G.W.Wasilkowski, and H.Wozniakowski, The inverse of the star-discrepancy depends linearly on the dimension, Acta Arithmetica XCVI.3, pp.279-302, 2001. MR 2002b:11103
  • 3. F.H.Hickernell, A generalized discrepancy and quadrature error bound, Math. Comp. 67, pp.299-322, 1998. MR 98c:65032
  • 4. F.H.Hickernell, I.H.Sloan, and G.W.Wasilkowski, On tractability of integration for certain Banach spaces of functions, Monte Carlo and Quasi-Monte Carlo 2003 (H. Niederreiter, ed.), Springer 2003 (to appear).
  • 5. H.Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992. MR 93h:65008
  • 6. E.Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics 1349, Springer, 1988. MR 90a:65004
  • 7. E.Novak and H.Wozniakowski, Intractability results for integration and discrepancy, J. Complexity 17, pp.388-441, 2001. MR 2002f:65204
  • 8. S.H.Paskov, New methodologies for valuing derivatives, Mathematics of Derivative Securities (S. Pliska, M. Dempster eds.), pp.545-582, Cambridge University Press, 1997.
  • 9. S.H.Paskov and J.F.Traub, Faster valuation of financial securities, J. Portfolio Management 22, pp.113-120, 1995.
  • 10. D.Pollard, Convergence of Stochastic Processes, 1984, Springer Verlag. MR 86i:60074
  • 11. I.H.Sloan, QMC integration--beating intractability by weighting the coordinate directions, Monte Carlo and Quasi-Monte Carlo Methods 2000 (K.-T. Fang, F.J. Hickernell, H. Niederreiter, eds.), pp.103-123, Springer 2002.
  • 12. I.H.Sloan and H.Wozniakowski, When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?, J. Complexity 14, pp.1-33 (1998). MR 99d:65384
  • 13. J.F.Traub and A.G.Werschulz, Complexity and Information, Cambridge University Press, 1998. MR 2000m:65170
  • 14. J.F.Traub, G.W.Wasilkowski, and H.Wozniakowski, Information-Base Complexity, Academic Press, New York, 1988. MR 90f:68085
  • 15. S.K.Zaremba, Some applications of multivariate integration by parts, Ann. Pol. Math. 21, pp.95-96, 1968. MR 38:4034

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65D05, 65D30, 65Y20, 62M20, 60G25

Retrieve articles in all journals with MSC (2000): 65D05, 65D30, 65Y20, 62M20, 60G25


Additional Information

Fred J. Hickernell
Affiliation: Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
Email: fred@math.hkbu.edu.hk

Ian H. Sloan
Affiliation: School of Mathematics, University of New South Wales, Sydney 2052, Australia
Email: sloan@maths.unsw.edu.au

Grzegorz W. Wasilkowski
Affiliation: Department of Computer Science, University of Kentucky, 773 Anderson Hall, Lexington, Kentucky 40506-0046
Email: greg@cs.uky.edu

DOI: https://doi.org/10.1090/S0025-5718-04-01624-2
Keywords: Weighted integration, quasi--Monte Carlo methods, discrepancy, tractability
Received by editor(s): May 27, 2002
Received by editor(s) in revised form: March 4, 2003
Published electronically: January 5, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society