Improved methods and starting values to solve the matrix equations iteratively

Authors:
Ivan G. Ivanov, Vejdi I. Hasanov and Frank Uhlig

Translated by:

Journal:
Math. Comp. **74** (2005), 263-278

MSC (2000):
Primary 65F10

DOI:
https://doi.org/10.1090/S0025-5718-04-01636-9

Published electronically:
January 27, 2004

MathSciNet review:
2085410

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The two matrix iterations are known to converge linearly to a positive definite solution of the matrix equations , respectively, for known choices of and under certain restrictions on . The convergence for previously suggested starting matrices is generally very slow. This paper explores different initial choices of in both iterations that depend on the extreme singular values of and lead to much more rapid convergence. Further, the paper offers a new algorithm for solving the minus sign equation and explores mixed algorithms that use Newton's method in part.

**1.**W. N. Anderson Jr., T. D. Morley, and G. E. Trapp,*Positive solutions to 𝑋=𝐴-𝐵𝑋⁻¹𝐵**, Linear Algebra Appl.**134**(1990), 53–62. MR**1060009**, https://doi.org/10.1016/0024-3795(90)90005-W**2.**B. L. Buzbee, G. H. Golub, and C. W. Nielson,*On direct methods for solving Poisson’s equations*, SIAM J. Numer. Anal.**7**(1970), 627–656. MR**0287717**, https://doi.org/10.1137/0707049**3.**S. M. El-Sayed,*Theorems for the Existence and Computing of Positive Definite Solutions for Two Nonlinear Matrix Equation*, Proc. of 25 Spring Conference of the Union of Bulgarian Mathematicians, Kazanlak, 1996, pp.155-161, (in Bulgarian).**4.**Salah M. El-Sayed and André C. M. Ran,*On an iteration method for solving a class of nonlinear matrix equations*, SIAM J. Matrix Anal. Appl.**23**(2001/02), no. 3, 632–645. MR**1896810**, https://doi.org/10.1137/S0895479899345571**5.**Jacob C. Engwerda, André C. M. Ran, and Arie L. Rijkeboer,*Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation 𝑋+𝐴*𝑋⁻¹𝐴=𝑄*, Linear Algebra Appl.**186**(1993), 255–275. MR**1217209**, https://doi.org/10.1016/0024-3795(93)90295-Y**6.**Jacob C. Engwerda,*On the existence of a positive definite solution of the matrix equation 𝑋+𝐴^{𝖳}𝖷⁻¹𝖠=𝖨*, Linear Algebra Appl.**194**(1993), 91–108. MR**1243822**, https://doi.org/10.1016/0024-3795(93)90115-5**7.**Augusto Ferrante and Bernard C. Levy,*Hermitian solutions of the equation 𝑋=𝑄+𝑁𝑋⁻¹𝑁**, Linear Algebra Appl.**247**(1996), 359–373. MR**1412761**, https://doi.org/10.1016/0024-3795(95)00121-2**8.**Gene H. Golub and Charles F. Van Loan,*Matrix computations*, 2nd ed., Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1989. MR**1002570****9.**Chun-Hua Guo and Peter Lancaster,*Iterative solution of two matrix equations*, Math. Comp.**68**(1999), no. 228, 1589–1603. MR**1651757**, https://doi.org/10.1090/S0025-5718-99-01122-9**10.**Alston S. Householder,*The theory of matrices in numerical analysis*, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964. MR**0175290****11.**Ivan G. Ivanov and Salah M. El-sayed,*Properties of positive definite solutions of the equation 𝑋+𝐴*𝑋⁻²𝐴=𝐼*, Linear Algebra Appl.**279**(1998), no. 1-3, 303–316. MR**1637909**, https://doi.org/10.1016/S0024-3795(98)00023-8**12.**J. M. Ortega and W. C. Rheinboldt,*Iterative solution of nonlinear equations in several variables*, Academic Press, New York-London, 1970. MR**0273810****13.**Olga Taussky,*Matrices 𝐶 with 𝐶ⁿ→0*, J. Algebra**1**(1964), 5–10. MR**0161865**, https://doi.org/10.1016/0021-8693(64)90003-1**14.**J. H. Wilkinson,*The algebraic eigenvalue problem*, Clarendon Press, Oxford, 1965. MR**0184422****15.**Xingzhi Zhan,*Computing the extremal positive definite solutions of a matrix equation*, SIAM J. Sci. Comput.**17**(1996), no. 5, 1167–1174. MR**1404867**, https://doi.org/10.1137/S1064827594277041

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
65F10

Retrieve articles in all journals with MSC (2000): 65F10

Additional Information

**Ivan G. Ivanov**

Affiliation:
Faculty of Economics and Business Administration, 125 Tzarigradsko chaussee, bl.3, Sofia University, Sofia 1113, Bulgaria

Email:
i_-ivanov@feb.uni-sofia.bg

**Vejdi I. Hasanov**

Affiliation:
Laboratory of Mathematical Modelling, Shumen University, Shumen 9712, Bulgaria

Email:
v.hasanov@fmi.shu-bg.net

**Frank Uhlig**

Affiliation:
Department of Mathematics, Auburn University, Auburn, Alabama 36849–5310

Email:
uhligfd@auburn.edu

DOI:
https://doi.org/10.1090/S0025-5718-04-01636-9

Keywords:
Matrix equation,
positive definite solution,
iterative method,
Newton's method

Received by editor(s):
May 29, 2001

Received by editor(s) in revised form:
May 7, 2003

Published electronically:
January 27, 2004

Additional Notes:
This work is partially supported by Shumen University under Grant #3/04.06.2001.

Article copyright:
© Copyright 2004
American Mathematical Society