Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A finite element method for nearly incompressible elasticity problems

Authors: Dietrich Braess and Pingbing Ming
Journal: Math. Comp. 74 (2005), 25-52
MSC (2000): Primary 65N30, 74S05, 74B20
Published electronically: April 28, 2004
MathSciNet review: 2085401
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A finite element method is considered for dealing with nearly incompressible material. In the case of large deformations the nonlinear character of the volumetric contribution has to be taken into account. The proposed mixed method avoids volumetric locking also in this case and is robust for $\lambda \to \infty$ (with $\lambda$ being the well-known Lamé constant). Error estimates for the $L^{\infty}$-norm are crucial in the control of the nonlinear terms.

References [Enhancements On Off] (What's this?)

  • 1. L. Agmon, L. Douglas, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure. Appl. Math. 17 (1964), 35-92. MR 28:5252
  • 2. I. Babuska and M. Suri, On locking and robustness in the finite element method, SIAM. J. Numer. Anal. 29 (1992), 1261-1293. MR 94c:65128
  • 3. C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements, SIAM. J. Numer. Anal. 35 (1998), 1893-1916. MR 99g:65107
  • 4. J. M. Boland and R. A. Nicolaides, Stable and semistable low order finite elements for viscous flows, SIAM. J. Numer. Anal. 22 (1985), 474-492. MR 86m:65139
  • 5. D. Braess, Stability of saddle point problems with penalty, RAIRO, M$^2$AN 30 (1996), 731-742. MR 99k:65099
  • 6. -, Enhanced assumed strain elements and locking in membrane problems, Comput. Methods Appl. Mech. Eng. 165 (1998), 155-174. MR 2000j:74084
  • 7. -, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, 2001. MR 2001k:65002
  • 8. D. Braess, C. Carstensen, and B. D. Reddy, Uniform convergence and a posteriori error estimators for the enhanced strain finite element method, Numer. Math. 96 (2004) 461-479.
  • 9. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994. MR 95f:65001
  • 10. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.MR 92d:65187
  • 11. P. G. Ciarlet, Finite Element Methods for Elliptic Problems, North-Holland, Amsterdam, 1978.MR 58:25001
  • 12. -, Mathematical Elasticity. Volume 1: Three-dimensional Elasticity, North-Holland, Amsterdam, 1988.MR 89e:73001
  • 13. P. Clément, Approximation by finite element functions using local regularization, RAIRO, Sér. Rouge Anal. Numér. R-2 (1975), 77-84.MR 53:4569
  • 14. M. C. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321-340.MR 44:5836
  • 15. M. Dobrowolski, A mixed finite element method for approximating incompressible materials, SIAM. J. Numer. Anal. 29 (1992), 365-389.MR 93b:65167
  • 16. R. Durán, R. Nochetto, and J. Wang, Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D, Math. Comp. 51 (1988), 491-506.MR 89b:65261
  • 17. M. Fortin, An analysis of the convergence of mixed finite element methods, RAIRO, Anal. Numér. 11 (1977), 341-354.MR 57:4473
  • 18. J. Frehse and R. Rannacher, Eine ${L}^1$-Fehlerabschätzung für diskrete Grundlösungen in der Methode der finiten Elemente, Bonner Math. Schriften. 89 (1976), 92-114.MR 57:11104
  • 19. -, Asymptotic ${L}^{\infty}$ error estimates for linear finite element approximations of quasilinear boundary value problems, SIAM. J. Numer. Anal. 15 (1978), 418-431.MR 58:19224
  • 20. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.MR 86m:35044
  • 21. H. Le Dret, Constitutive laws and existence questions in incompressible nonlinear elasticity, J. Elasticity. 15 (1985), 369-387. MR 87h:73022
  • 22. -, Incompressible limit behaviour of slightly compressible nonlinear elastic materials, RAIRO, M$^2$AN 20 (1986), 315-340. MR 87k:73011
  • 23. P. Le Tallec, Numerical Methods for Nonlinear Three-dimensional Elasticity, in ``Handbook of Numerical Analysis", VOL. III. (P. G. Ciarlet and J. L. Lions eds.), 465-662. North-Holland, 1994. MR 96b:73093
  • 24. J. L. Lions and E. Magènes, Problèmes aux limites non homogènes et applications (tome 1), S. A. Dunod, Paris, 1968.MR 40:512
  • 25. F. Natterer, Über die punktweise Konvergenz finiter Elemente, Numer. Math. 25 (1975), 67-77.MR 57:14514
  • 26. R. W. Ogden, Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubber-like solids, Proc. Roy. Soc. London, A328 (1972), 567-583.
  • 27. R. W. Ogden, Volume changes associated with the deformation of rubber-like solids, J. Mech. Phys. Solids 24 (1976), 323-338.
  • 28. D. Pantuso and K. J. Bathe, On the stability of mixed finite elements in large strain analysis of incompressible solids, Finite Elements in Analysis and Design 28 (1997), 83-104. MR 98i:73060
  • 29. J. M. Pouyot, Études numérique de quelques problémes raides en mécanique des milieux faiblement compressible, Calcolo 12 (1975), 275-314. MR 54:9252
  • 30. S. Reese, P. Wriggers, and B.D. Reddy, A new locking-free brick element technique for large deformation problems in elasticity, Computers & Structures 75 (2000), 291-304.MR 2001j:74087
  • 31. W. C. Rheinboldt, Methods for Solving Nonlinear Equations, vol. 14, CBMS Series, SIAM, Philadelpha, 1974.MR 51:7278
  • 32. R. Rostamian, Internal constraints in boundary value problems of continuum mechanics, Indiana Math. 27 (1978), 637-656. MR 58:14158
  • 33. V. Ruas, Existence and stability of asymmetric finite-element approximations in nonlinear elasticity, SIAM J. Numer. Anal. 26 (1989), 1031-1059.MR 90h:65187
  • 34. A. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959-962. MR 51:9526
  • 35. J. C. Simo and M. S. Rifai, A class of assumed strain methods and the method of incompatible modes, Int. J. Numer. Meths. Engrg. 29 (1990), 1595-1638.MR 91d:73062
  • 36. T. Sussman and K. J. Bathe, A finite elment formulation for nonlinear incompressible elastic and noninelastic analysis, Computer & Structures 26 (1987), 357-409.
  • 37. L. R. Treloar, The Physics of Rubber Elasticity, Oxford University Press, Oxford, 1975.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 74S05, 74B20

Retrieve articles in all journals with MSC (2000): 65N30, 74S05, 74B20

Additional Information

Dietrich Braess
Affiliation: Faculty of Mathematics, Ruhr-University, 44780 Bochum, Germany

Pingbing Ming
Affiliation: Institute of Computational Mathematics, Chinese Academy of Sciences, POB 2719, Beijing 100080, Peoples Republic of China

Keywords: Incompressible elasticity, Green's functions, $L^{\infty}$-estimates.
Received by editor(s): November 7, 2001
Received by editor(s) in revised form: July 11, 2003
Published electronically: April 28, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society