Linear difference equations with transition points

Authors:
Z. Wang and R. Wong

Journal:
Math. Comp. **74** (2005), 629-653

MSC (2000):
Primary 41A60, 39A10, 33C45

DOI:
https://doi.org/10.1090/S0025-5718-04-01677-1

Published electronically:
May 25, 2004

MathSciNet review:
2114641

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two linearly independent asymptotic solutions are constructed for the second-order linear difference equation

where and have power series expansions of the form

with . Our results hold uniformly for in an infinite interval containing the

*transition point*given by . As an illustration, we present an asymptotic expansion for the monic polynomials which are orthogonal with respect to the modified Jacobi weight , , where , and is real analytic and strictly positive on .

**1.**G. D. Birkhoff,*Formal theory of irregular linear difference equations*, Acta Math.,**54**(1930), pp. 205-246.**2.**G. D. Birkhoff and W. J. Trjitzinsky,*Analytic theory of singular difference equations*, Acta Math.,**60**(1932), pp. 1-89.**3.**Pavel Bleher and Alexander Its,*Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model*, Ann. of Math. (2)**150**(1999), no. 1, 185–266. MR**1715324**, https://doi.org/10.2307/121101**4.**P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou,*Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory*, Comm. Pure Appl. Math.**52**(1999), no. 11, 1335–1425. MR**1702716**, https://doi.org/10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO;2-1**5.**P. Deift, T. Kriecherbauer, K. T-R McLaughlin, S. Venakides, and X. Zhou,*Strong asymptotics of orthogonal polynomials with respect to exponential weights*, Comm. Pure Appl. Math.**52**(1999), no. 12, 1491–1552. MR**1711036**, https://doi.org/10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.3.CO;2-R**6.**P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou,*A Riemann-Hilbert approach to asymptotic questions for orthogonal polynomials*, Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), 2001, pp. 47–63. MR**1858269**, https://doi.org/10.1016/S0377-0427(00)00634-8**7.**P. Deift and X. Zhou,*A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation*, Ann. of Math. (2)**137**(1993), no. 2, 295–368. MR**1207209**, https://doi.org/10.2307/2946540**8.**R. B. Dingle and G. J. Morgan,*𝑊𝐾𝐵 methods for difference equations. I, II*, Appl. Sci. Res.**18**(1967/1968), 221–237; 238–245. MR**0225511**, https://doi.org/10.1007/BF00382348**9.**R. B. Dingle and G. J. Morgan,*𝑊𝐾𝐵 methods for difference equations. I, II*, Appl. Sci. Res.**18**(1967/1968), 221–237; 238–245. MR**0225511**, https://doi.org/10.1007/BF00382348**10.**T. Kriecherbauer and K. T.-R. McLaughlin,*Strong asymptotics of polynomials orthogonal with respect to Freud weights*, Internat. Math. Res. Notices**6**(1999), 299–333. MR**1680380**, https://doi.org/10.1155/S1073792899000161**11.**Arno B. J. Kuijlaars and Kenneth T.-R. McLaughlin,*Riemann-Hilbert analysis for Laguerre polynomials with large negative parameter*, Comput. Methods Funct. Theory**1**(2001), no. 1, [On table of contents: 2002], 205–233. MR**1931612**, https://doi.org/10.1007/BF03320986**12.**A. B. J. Kuijlaars, K. T-R McLaughlin, W. Van Assche, and M. Vanlessen,*The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on*, preprint math. CA/0111252.**13.**A. B. J. Kuijlaars and M. Vanlessen,*Universality for eigenvalue correlations from the modified Jacobi unitary ensemble*, Int. Math. Res. Not.**30**(2002), 1575–1600. MR**1912278**, https://doi.org/10.1155/S1073792802203116**14.**X. Li and R. Wong,*On the asymptotics of the Meixner-Pollaczek polynomials and their zeros*, Constr. Approx.**17**(2001), no. 1, 59–90. MR**1794802**, https://doi.org/10.1007/s003650010009**15.**Frank W. J. Olver,*Asymptotics and special functions*, AKP Classics, A K Peters, Ltd., Wellesley, MA, 1997. Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]. MR**1429619****16.**W.-Y. Qiu and R. Wong,*Uniform asymptotic formula for orthogonal polynomials with exponential weight*, SIAM J. Math. Anal.**31**(2000), no. 5, 992–1029. MR**1759196**, https://doi.org/10.1137/S0036141098344671**17.**Gábor Szegő,*Orthogonal polynomials*, 4th ed., American Mathematical Society, Providence, R.I., 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII. MR**0372517****18.**W. Van Assche, J. S. Geronimo, and A. B. J. Kuijlaars,*Riemann-Hilbert problems for multiple orthogonal polynomials*, pp. 23-50 in ``NATO ASI Special Functions 2000'' (J. Bustoz et. al. eds.), Kluwer Academic Publisher, Dordrecht, 2001.**19.**Z. Wang and R. Wong,*Uniform asymptotic expansion of 𝐽_{𝜈}(𝜈𝑎) via a difference equation*, Numer. Math.**91**(2002), no. 1, 147–193. MR**1896091**, https://doi.org/10.1007/s002110100316**20.**Z. Wang and R. Wong,*Asymptotic expansions for second-order linear difference equations with a turning point*, Numer. Math.,**94**(2003), pp. 147-194.**21.**R. Wong and H. Li,*Asymptotic expansions for second-order linear difference equations*, J. Comput. Appl. Math.**41**(1992), no. 1-2, 65–94. Asymptotic methods in analysis and combinatorics. MR**1181710**, https://doi.org/10.1016/0377-0427(92)90239-T**22.**R. Wong and H. Li,*Asymptotic expansions for second-order linear difference equations. II*, Stud. Appl. Math.**87**(1992), no. 4, 289–324. MR**1182142**, https://doi.org/10.1002/sapm1992874289

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
41A60,
39A10,
33C45

Retrieve articles in all journals with MSC (2000): 41A60, 39A10, 33C45

Additional Information

**Z. Wang**

Affiliation:
Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, P. O. Box 71010, Wuhan 430071, Peoples Republic of China

Email:
mcwang@cityu.edu.hk

**R. Wong**

Affiliation:
Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

Email:
mawong@cityu.edu.hk

DOI:
https://doi.org/10.1090/S0025-5718-04-01677-1

Keywords:
Difference equation,
transition points,
three-term recurrence relation,
orthogonal polynomials

Received by editor(s):
April 2, 2003

Received by editor(s) in revised form:
October 6, 2003

Published electronically:
May 25, 2004

Additional Notes:
The work of this author was partially supported by the Research Grant Council of Hong Kong under Project 9040522

Article copyright:
© Copyright 2004
American Mathematical Society