Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Conjugate gradient predictor corrector method for solving large scale problems

Author: Muhammed I. Syam
Journal: Math. Comp. 74 (2005), 805-818
MSC (2000): Primary 65
Published electronically: September 16, 2004
MathSciNet review: 2114649
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we give a new method for solving large scale problems. The basic idea of this method depends on implementing the conjugate gradient as a corrector into a continuation method. We use the Euler method as a predictor. Adaptive steplength control is used during the tracing of the solution curve. We present some of our experimental examples to demonstrate the efficiency of the method.

References [Enhancements On Off] (What's this?)

  • 1. E. L. Allgower and K. Georg, Numerical path following. In P. G. Ciarlet and J. L. Lions, editors, Handbook of Numerical Analysis, volume 5, North-Holland (1997). MR 98i:65001
  • 2. E. L. Allgower, C.-S. Chien, K. Georg, C.-F. Wang, Conjugate gradient methods for continuation problems. J. Comput. Appl. Math. 38, (1991), 1-16. MR 92j:65161
  • 3. R. E. Bank and T. F. Chan, PLTMGC: A multi-grid continuation program for parameterized nonlinear elliptic systems, SIAM J. Sci. Statis. Comput., 7 (1986), 540-559. MR 87d:65125
  • 4. S. Bernstein, Sur la generalisation du probleme de Dirichlet., Math. Ann., 69 (1910), 82-136.
  • 5. T. F. Chan and H. B. Keller, Arc-length continuation and multi-grid techniques for nonlinear eigenvalue problems, SIAM J. Sci. Statis. Comput., 3 (1982), 173-194. MR 83d:65152
  • 6. S. N. Chow and J.K. Hale, Methods of bifurcation theory, Springer Verlag, New York, 1982. MR 84e:58019
  • 7. K. A. Cliffe and A. Spence, in Numerical methods for bifurcation problems (T. Kupper, H. D. Mittleman, and H. Weber, Eds.), ISNM, Birkhauser, 1984.MR 86j:65008
  • 8. A. I. Cohen, Rate of convergence of several congugate gradient algorithms, SIAM J. Numer. Anal., 9 (1972), 248-259. MR 47:1284
  • 9. R. Fletcher, Practical methods of optimization, J. Wiley, New York, second ed., 1987. MR 89j:65050
  • 10. C.B. Garci and W. I. Zangwill, Pathways to solutions, fixed points, and equilibria, Prentice-Hall, Englewood Cliffs, NJ, 1981.
  • 11. R. Glowinski, H.B. Keller, and L. Reinhart, Continuation conjugate gradient methods for the least squares solution of nonlinear boundary value problems, SIAM J. Sci. Statist. Comput., 6 (1985), 793-832. MR 86j:65156
  • 12. G. H. Golub and C. F. Van Loan, Matrix computations, J. Hopkins University Press, London, Second ed., 1989. MR 90d:65055
  • 13. F.J. Gould and J.W. Tolle, Complementary pivoting on a pseudomanifold structure with applications on the decision sciences, Vol. 2 of Sigma Series in Applied Mathematics, Heldermann Verlag, Berlin, 1983. MR 85h:90126
  • 14. K. Georg, Matrix-Free Numerical Continuation and Bifurcation, Numerical Functional Analysis and Optimization, vol. 22 (2001), 303-320.MR 2002j:65127
  • 15. P. Gill, W. Murray and M. Wright, Practical optimization, Academic Press, London, 1981. MR 83d:65195
  • 16. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards, 49 (1952), 409-436. MR 15:651a
  • 17. J. P. Keener and H. B. Keller, Perturbed bifurcation theory, Arch. Rational Mech. Anal., 50 (1974), 159-175. MR 49:1253
  • 18. H. B. Keller, Lectures on numerical methods in bifurcation problems, Springer Verlag, Berlin, Heidelberg, New York, 1987. MR 89f:58031
  • 19. H. B. Keller, Nonlinear bifurcation, J. Diff. Equ., 7 (1970), 417- 434.MR 41:8851
  • 20. H. B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, Applications of Bifurcation Theory, P.H. Rabinowitz, ed., New York, London, 1977, Academic Press, 359-384. MR 56:13592
  • 21. F. Klein, Neue beitrage zur Riemannschen Funktionentheorie, Math. Ann., 21( 1882-1883).
  • 22. D. S. Kershaw, The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations, J. Comput. Phys. 26 I (Jan.) (1978), 43-65. MR 58:8190
  • 23. E. Lahaye, Une methode de resolution d'une categorie d'equations transcendantes, C. R. Acad. Sci. Paris, 198 (1934), 1840-1842.
  • 24. J. Leray and J. Schauder, Topologie et equations fonctioneles, Ann. Sci. Ecole Norm. Sup., 51(1934), 45-78.
  • 25. W. Mackens, Numerical differentiation of implicitly defined space curves, Computing, 41 (1989), 237-260. MR 90b:65030
  • 26. J. E. Marsden and A. J. Tromba, Vector calculus, Third edition, W. H. Freeman and Company, New Your, 1988, 75.
  • 27. G. P. McCormick and K. Ritter, Alternate proofs of the convergence properties of the conjugate-gradient method, J. Optim. Theory Appl., 13(1974), 497-518.
  • 28. H. D. Mittelmann, D. Roose, eds., Continuation Techniques and Bifurcation Problems, Vol. 92 of ISNM, Birkhauser, 1990. MR 90m:65005
  • 29. H. Poincare, Sur les courbes define par une equation differentielle, I-IV, Oeuvres I. Gauthier-Villars, Paris, 1881-1886.
  • 30. E. Polak and G. Ribiere, Note sur la convergence de methodes de directions conjugees, Rev. Francaise Informate. Recherche Operatonelle, 3(1969), 35-43. MR 40:8232
  • 31. W. C. Rheinboldt, Numerical analysis of continuation methods for nonlinear structural problems, Comp. and Structures, 13(1981), 103-113. MR 82i:73043
  • 32. R. Seydel, From Equilibrium to Chaos, Practical Bifurcation and Stability Analysis, Elsevier, New York, 1988. MR 89e:58084
  • 33. H.I. Siyyam and M.I. Syam, The modified trapezoidal rule for line integrals, J. Comput. Appl. Math. 84 (1997), 1-14.
  • 34. M. I. Syam and H. I. Siyyam, Numerical differentiation of implicitly defined curves, J. of Compu. Appl. Math., 108(1999), 131-144. MR 2000d:65040
  • 35. M. I. Syam, Interpolation predictors over implicitly defined curves, Computers & Mathematics with Applications, 44(2002), 1067-1076. MR 2003j:65053
  • 36. M. J. Todd, The computation of fixed points and applications, vol. 124 of Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Berlin, Heidelberg, New York, 1976. MR 53:14478
  • 37. K. H. Winters, K. A. Cliffe, The prediction of critical points for thermal explosions in a finite volume, Combustion and Flame, 62 (1985), 13-20.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65

Retrieve articles in all journals with MSC (2000): 65

Additional Information

Muhammed I. Syam
Affiliation: Department of Mathematics and Computer Science, United Arab Emirates University, Al-Ain, United Arab Emirates

Keywords: Continuation methods, large scale problems, conjugate gradient method
Received by editor(s): April 15, 2002
Received by editor(s) in revised form: November 23, 2003
Published electronically: September 16, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society