Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Tame kernels of cubic cyclic fields

Author: Jerzy Browkin
Journal: Math. Comp. 74 (2005), 967-999
MSC (2000): Primary 11R70; Secondary 11R16, 11Y40, 19--04, 19C99
Published electronically: October 27, 2004
MathSciNet review: 2114659
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: There are many results describing the structure of the tame kernels of algebraic number fields and relating them to the class numbers of appropriate fields. In the present paper we give some explicit results on tame kernels of cubic cyclic fields. Table 1 collects the results of computations of the structure of the tame kernel for all cubic fields with only one ramified prime $p,$ $7\le p<5,000.$

In particular, we investigate the structure of the 7-primary and 13-primary parts of the tame kernels. The theoretical tools we develop, based on reflection theorems and singular primary units, enable the determination of the structure even of 7-primary and 13-primary parts of the tame kernels for all fields as above. The results are given in Tables 2 and 3.

References [Enhancements On Off] (What's this?)

  • [Br1] J. Browkin, The functor $K_{2}$ for the ring of integers of a number field, Banach Center Publ. 9 (1982), 187-195. MR 0738813 (85f:11084)
  • [Br2] -, On the $p$-rank of the tame kernel of algebraic number fields, J. Reine Angew. Math. 432 (1992), 135-149. MR 1184763 (93j:11077)
  • [CH] P.E. Conner, J. Hurrelbrink, On the $4$-rank of the tame kernel of $K_{2}\mathcal O$ in positive definite terms, J. Number Theory 88 (2) (2001), 263-282. MR 1832007 (2002h:11120)
  • [Ge] M. Geijsberts, The tame kernel, computational aspects, Ph.D. Thesis, Catholic University of Nijmegen (1991).
  • [Gr] G. Gras, Remarks on $K_{2}$ of number fields, J. Number Theory 23 (3) (1986), 322-335. MR 0846962 (87j:11124)
  • [Ha] H. Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörper, Abh. Deutsch. Akad. Wiss. 2 (1948), 3-95, (= Mathematische Abhandlungen, H.W. Leopoldt, P. Roquette (eds.), Band III, pp. 289-379, Berlin, de Gruyter, 1975). MR 0033863 (11:503d)
  • [HK] J. Hurrelbrink, M. Kolster, Tame kernels under relative quadratic extensions and Hilbert symbols, J. Reine Angew. Math. 499 (1998), 145-188. MR 1631116 (2000a:11169)
  • [IR] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1982. MR 0661074 (83g:12001)
  • [Ke] F. Keune, On the structure of the $K_{2}$ of the ring of integers in a number field, K-Theory 2 (5) (1989), 625-645. MR 0999397 (90g:11162)
  • [KK] H.K. Kim, J.S. Kim, Evaluation of zeta function of the simplest cubic field at negative odd integers, Math. Comp. 71 (239) (2002), 1243-1262. MR 1898754 (2003h:11143)
  • [Ko1] M. Kolster, The structure of $2$-Sylow subgroup of $K_{2}\mathfrak{o},$ I, Comment. Math. Helvetici 61 (3) (1986), 376-388. MR 0860130 (88a:11125)
  • [Ko2] -, The structure of $2$-Sylow subgroup of $K_{2}\mathfrak o$, II, K-Theory 1 (5) (1987), 467-479. MR 0934452 (89h:11077)
  • [Ko3] -, A relation between the $2$-primary parts of the main conjecture and the Birch-Tate conjecture, Canad. Math. Bull. 32 (2) (1989), 248-251.MR 1006753 (90k:11154)
  • [Ko4] -, $K_{2}$ of rings of algebraic integers, J. Number Theory 42 (1) (1992), 103-122.MR 1176424 (93f:11089)
  • [KM] M. Kolster, A. Movahhedi, Galois co-descent for étale wild kernels and capitulation, Ann. Inst. Fourier, Grenoble 50 (1) (2000), 35-65.MR 1762337 (2001d:11115)
  • [Ma] F. Marko, On the existence of $p$-units and Minkowski units in totally real cyclic fields, Abh. Math. Sem. Univ. Hamburg 66 (1996), 89-111.MR 1418221 (97k:11151)
  • [MW] B. Mazur, A. Wiles, Class fields of abelian extensions of $\mathbb Q $, Invent. Math. 76 (1984), 179-330. MR 0742853 (85m:11069)
  • [Q1] H. Qin, Computation of $K_{2}\mathbb{Z} [\sqrt {-6}]$, J. Pure Appl. Algebra 96 (1994), 133-146.MR 1303542 (95i:11135)
  • [Q2] -, The $2$-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith. 69 (1995), 153-169. MR 1316704 (96a:11132)
  • [Q3] -, The $4$-rank of $K_2O_F$ for real quadratic fields $F$, Acta Arith. 72 (1995), 323-333. MR 1348200 (96f:11151)
  • [Q4] -, Tame kernels and Tate kernels of quadratic number fields, J. Reine Angew. Math. 530 (2001), 105-144. MR 1807269 (2002g:11167)
  • [ST] J.H. Silverman, J. Tate, Rational Points on Elliptic Curves, Springer-Verlag, New York, 1992. MR 1171452 (93g:11003)
  • [Ta] J. Tate, Relations between $K_{2}$ and Galois cohomology, Invent. Math. 36 (1976), 257-274. MR 0429837 (55:2847)
  • [Wa] L.C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, 1982. MR 0718674 (85g:11001)
  • [Wi] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), 493-540.MR 1053488 (91i:11163)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11R70, 11R16, 11Y40, 19--04, 19C99

Retrieve articles in all journals with MSC (2000): 11R70, 11R16, 11Y40, 19--04, 19C99

Additional Information

Jerzy Browkin
Affiliation: Institute of Mathematics, University of Warsaw, ul. Banacha 2, PL–02–097 Warsaw, Poland

Keywords: Cubic fields, cyclic fields, tame kernel
Received by editor(s): October 17, 2002
Received by editor(s) in revised form: May 4, 2004
Published electronically: October 27, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society