Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Strong Stieltjes distributions and orthogonal Laurent polynomials with applications to quadratures and Padé approximation


Authors: C. Díaz-Mendoza, P. González-Vera and M. Jiménez-Paiz
Journal: Math. Comp. 74 (2005), 1843-1870
MSC (2000): Primary 42C05, 41A55
DOI: https://doi.org/10.1090/S0025-5718-05-01763-1
Published electronically: June 7, 2005
MathSciNet review: 2164100
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Starting from a strong Stieltjes distribution $\phi$, general sequences of orthogonal Laurent polynomials are introduced and some of their most relevant algebraic properties are studied. From this perspective, the connection between certain quadrature formulas associated with the distribution $\phi$ and two-point Padé approximants to the Stieltjes transform of $\phi$ is revisited. Finally, illustrative numerical examples are discussed.


References [Enhancements On Off] (What's this?)

  • 1. D.H. Bailey, Y. Hida, X. S. Li, B. Thompson. ARPREC: An Arbitrary Precision Computation Package. Manuscript, 2002.
  • 2. G.A. Baker Jr., G.S. Rushbrooke, H.E. Gilbert. High-temperature series expansions for the spin- ${1\over 2}$ Heisenberg model by the method of irreducible representations of the symmetric group. Phys. Rev. (2) 135 (1964), A1272-A1277. MR 0171545 (30:1776)
  • 3. A. Bultheel, C. Díaz-Mendoza, P. González-Vera, R. Orive. Quadrature on the half line and two-point Padé approximants to Stieltjes functions. II. Convergence. J. Comput. Appl. Math. 77 (1997) 53-76.MR 1440004 (98a:41023)
  • 4. A. Bultheel, C. Díaz-Mendoza, P. González-Vera, R. Orive. Quadrature on the half line and two-point Padé approximants to Stieltjes functions. Part III, The unbounded case. J. Comput. Appl. Math 87(1997) 95-117.MR 1488823 (98j:41033)
  • 5. A. Bultheel, C. Díaz-Mendoza, P. González-Vera, R. Orive. Estimates of the rate of convergence for certain quadrature formulas on the half-line. Continued fractions: from analytic number theory to constructive approximation (Columbia, MO, 1998), Contemp. Math., 236, Amer. Math. Soc., Providence, RI, 1999, 85-100. MR 1665364 (2000g:65017)
  • 6. A. Bultheel, C. Díaz-Mendoza, P. González-Vera, R. Orive. On the convergence of certain Gauss-Type quadrature formulas for unbounded intervals. Math. Comp., 69 (2000), 721-747. MR 1651743 (2000i:65034)
  • 7. A. Bultheel, C. Díaz-Mendoza, P. González-Vera, R. Orive. Orthogonal Laurent polynomials and quadrature formulas for unbounded intervals: I. Gauss-type formulas. Rocky Mountain J. Math. 33 (2003), 585-608. MR 2021367 (2005d:41039)
  • 8. A. Bultheel, P. González-Vera, E. Hendriksen, O. Njåstad. Orthogonal rational function and quadrature on the half-line. J. Complexity 19 (2003), 212-230.MR 1984110 (2004d:41054)
  • 9. A. Bultheel, P. González-Vera, R. Orive. Quadrature on the half-line and two-point Padé approximants to Stieltjes functions. I. Algebraic aspects. Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions (Delft, 1994). J. Comput. Appl. Math. 65 (1995), no. 1-3, 57-72. MR 1379119 (96m:41018)
  • 10. A. Draux. Polynômes orthogonaux formels. Applications. Lecture Notes in Mathematics, 974. Springer-Verlag, Berlin, 1983. MR 0690769 (85h:42027)
  • 11. T.S. Chihara. An Introduction to Orthogonal Polynomials. Gordon and Breach, New York, 1978. MR 0481884 (58:1979)
  • 12. L. Cochram, S.C. Cooper. Orthogonal Laurent polynomials on the real line. In S.C. Cooper and W.J. Thron, eds., Continued Fractions and Orthogonal Functions, Marcel Dekker, New York, 1994, 47-100. MR 1263248 (95b:42024)
  • 13. R. Cruz-Barroso, P. González-Vera. Orthogonal Laurent polynomials and quadratures on the unit circle and the real half-line. Submitted (2003).
  • 14. G. Freud. Orthogonal polynomials. Pergamon Press, Oxford, 1971.
  • 15. W. Gautschi. Numerical analysis. An introduction. Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1454125 (98d:65001)
  • 16. P. González-Vera, O. Njåstad. Convergence of two-point Padé approximants to series of Stieltjes. Extrapolation and rational approximation (Luminy, 1989). J. Comput. Appl. Math. 32 (1990), no. 1-2, 97-105.MR 1091780 (92k:41021)
  • 17. P.E. Gustafson and B.A. Hagler. Gaussian quadrature rules and numerical examples for strong extension of mass distribution functions. J. Comput. Appl. Math 105 (1999), no. 1-2, 317-326.MR 1690598 (2000d:42012)
  • 18. E. Hendriksen. A characterization of classical orthogonal Laurent polynomials. Nederl. Akad. Wetensch. Indag. Math. 50 (1988), no. 2, 165-180.MR 0952513 (89h:33014)
  • 19. E. Hendriksen, H. van Rossum. Orthogonal Laurent polynomials. Nederl. Akad. Wetensch. Indag. Math. 48 (1986), no. 1, 17-36. MR 0834317 (87j:30008)
  • 20. E. Hille. Analytic function theory. Vol. II. Introductions to Higher Mathematics, Ginn and Co., Boston, Mass.-New York-Toronto, Ont., 1962. MR 0201608 (34:1490)
  • 21. J. Illán, G. López Lagomasino. Sobre los métodos interpolatorios de integración numérica y su conexión con la approximación racional. Rev. Cienc. Mat., 8 (1987), 31-44. MR 0939222 (89b:65049)
  • 22. W.B. Jones, O. Njåstad, W.J. Thron. Two-point Padé expansions for a family of analytic functions. J. Comput. Appl. Math. 9 (1983), no. 2, 105-123.MR 0709210 (84j:30057)
  • 23. W.B. Jones, O. Njåstad. Orthogonal Laurent polynomials and strong moment theory: a survey. Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997). J. Comput. Appl. Math. 105 (1999), no. 1-2, 51-91.MR 1690578 (2000d:30054)
  • 24. W.B. Jones, W.J. Thron. Two-point Padé tables and $T$-fractions. Bull. Amer. Math. Soc. 83 (1977), no. 3, 388-390. MR 0447543 (56:5853)
  • 25. W.B. Jones, W.J. Thron. Orthogonal Laurent polynomials and gaussian quadrature. Quantum Mechanics in Mathematics, Chemistry, and Physics (K.E. Gustafson and W.P. Reinhardt, eds.), Plenum Press, New York, 1981, 449-455.
  • 26. W.B. Jones, W.J. Thron, H. Waadeland. A strong Stieltjes moment problem. Trans. Amer. Math. Soc. 261 (1980), 503-528. MR 0580900 (81j:30055)
  • 27. G. López Lagomasino, A. Martínez Finkelshtein. Rate of convergence of two-point Padé approximants and logarithmic asymptotics of Laurent-type orthogonal polynomials. Constr. Approx. 11 (1995), 255-286. MR 1342387 (96i:41016)
  • 28. A. Magnus. On the structure of the two-point Padé table. Analytic theory of continued fractions (Loen, 1981), Lecture Notes in Math., 932, Springer, Berlin-New York, 1982, 176-193.MR 0690461 (84c:30058)
  • 29. J. H. McCabe. A formal extension of the Padé table to include two point Padé quotients. J. Inst. Math. Appl. 15 (1975), 363-372.MR 0381246 (52:2143)
  • 30. O. Njåstad, W.J. Thron. The theory of sequences of orthogonal L-polynomials. In H. Waadeland & H. Wallin, eds., Padé Approximants and Continued fractions, Det Kongelige Norkse Videnskabers Selskab Skrifter (No. 1), 1983, 54-91.
  • 31. A. Sri Ranga. Another quadrature rule of highest algebraic degree of precision. Numer. Math. 68 (1994), 283-294.MR 1283343 (95c:65047)
  • 32. A. Sri Ranga. Symmetric orthogonal polynomials and the associated orthogonal $L$-polynomials. Proc. Amer. Math. Soc. 123 (1995), no. 10, 3135-3141. MR 1291791 (95m:42035)
  • 33. A. Sri Ranga, W. Van Assche. Blumenthal's theorem for Laurent orthogonal polynomials. J. Approx. Theory 117 (2002), no. 2, 255-278.MR 1903057 (2003g:42044)
  • 34. T.J. Stieltjes. Recherches sur les fractions continues. Ann. Fac. Sci. Univ. Toulouse 8 (1984), 1-122; 9 (1985), 1-47. MR 1607517 (99d:01040); MR 1623484 (99d:01041)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 42C05, 41A55

Retrieve articles in all journals with MSC (2000): 42C05, 41A55


Additional Information

C. Díaz-Mendoza
Affiliation: Department of Mathematical Analysis, La Laguna University, 38271 La Laguna, Tenerife, Canary Islands, Spain
Email: cjdiaz@ull.es

P. González-Vera
Affiliation: Department of Mathematical Analysis, La Laguna University, 38271 La Laguna, Tenerife, Canary Islands, Spain

M. Jiménez-Paiz
Affiliation: Department of Mathematical Analysis, La Laguna University, 38271 La Laguna, Tenerife, Canary Islands, Spain

DOI: https://doi.org/10.1090/S0025-5718-05-01763-1
Keywords: Strong Stieltjes distributions, orthogonal Laurent polynomials, quadrature formulas, Stieltjes transform, two-point Pad\'e approximants.
Received by editor(s): May 5, 2003
Received by editor(s) in revised form: May 4, 2004
Published electronically: June 7, 2005
Additional Notes: This work was supported by the Scientific Research Projects of the Ministerio de Ciencia y Tecnología and Comunidad Autónoma de Canarias under contracts BFM2001-3411 and PI 2002/136, respectively.
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society