Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Convolution quadrature time discretization of fractional diffusion-wave equations


Authors: Eduardo Cuesta, Christian Lubich and Cesar Palencia
Journal: Math. Comp. 75 (2006), 673-696
MSC (2000): Primary 65R20, 65M15; Secondary 26A33, 45K05
DOI: https://doi.org/10.1090/S0025-5718-06-01788-1
Published electronically: January 23, 2006
MathSciNet review: 2196986
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose and study a numerical method for time discretization of linear and semilinear integro-partial differential equations that are intermediate between diffusion and wave equations, or are subdiffusive. The method uses convolution quadrature based on the second-order backward differentiation formula. Second-order error bounds of the time discretization and regularity estimates for the solution are shown in a unified way under weak assumptions on the data in a Banach space framework. Numerical experiments illustrate the theoretical results.


References [Enhancements On Off] (What's this?)

  • 1. A. Ashyralyev and P. Sobolevskii, Well-Posedness of Parabolic Difference Equations. Birkhäuser, Basel, 1994. MR 1299329 (95j:65094)
  • 2. N. Y. Bakaev, V. Thomée, and L. Wahlbin, Maximum-norm estimates for resolvents of elliptic finite element operators, Math. Comp. 72 (2002) 1597-1610.MR 1986795 (2004g:65074)
  • 3. M. P. Calvo and C. Palencia, Avoiding the order reduction of Runge-Kutta methods for linear initial boundary value problems, Math. Comp. 71 (2001) 1529-1543.MR 1933043 (2003h:65091)
  • 4. C. Chen and T. Shi, Finite Element Methods for Integro-Differential Equations. World Scientific, Singapore, 1997.
  • 5. C. Cheng, V. Thomée, and L. Wahlbin, Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel, Math. Comp. 58 (1992) 587-602. MR 1122059 (93g:65120)
  • 6. M. Crouzeix, On multistep approximation of semigroups in Banach spaces, J. Comput. Appl. Math. 20 (1987) 25-35. MR 0920377 (88j:65135)
  • 7. E. Cuesta and C. Palencia, A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces, Appl. Numer. Math. 45 (2003) 139-159. MR 1967571 (2004b:65210)
  • 8. E. Cuesta and C. Palencia, A numerical method for an integro-differential equation with memory in Banach spaces: Qualitative properties, SIAM J. Numer. Anal. 41 (2003) 1232-1241. MR 2034878 (2004m:65225)
  • 9. Y. Fujita, Integro-differential equation which interpolates the heat equation and the wave equation, Osaka J. Math. 27 (1990) 319-327. MR 1066629 (91i:45007)
  • 10. Y. Fujita, Integro-differential equation which interpolates the heat equation and the wave equation (II), Osaka J. Math. 27 (1990) 797-804.MR 1088183 (92a:45032)
  • 11. C. González and C. Palencia, Stability of Runge-Kutta methods for abstract time-dependent parabolic problems: the Hölder case, Math. Comp. 68 (1999) 73-89. MR 1609666 (99c:65108)
  • 12. A. Hanyga, Wave propagation in media with singular memory, Math. Comput. Model. 34 (2001) 1399-1421. MR 1868410 (2002m:74028)
  • 13. D. Henry, Geometric Theory of Semilinear Parabolic Equations, LNM 840, Springer, Berlin (1981). MR 0610244 (83j:35084)
  • 14. R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000). MR 1890104 (2002j:00009)
  • 15. M. N. Le Roux, Semidiscretization in time for parabolic problems, Math. Comp. 33 (1979) 919-931. MR 0528047 (80f:65101)
  • 16. S. Larsson, V. Thomée, and L. B. Wahlbin, Finite-element methods for a strongly damped wave equation, IMA J. Numer. Anal. 11 (1991) 115-142.MR 1089551 (92d:65164)
  • 17. J.C. López-Marcos, A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal. 27 (1990) 20-31. MR 1034918 (91e:65160)
  • 18. Ch. Lubich, Discretized fractional calculus, SIAM J. Math. Anal. 17 (1986) 704-719.MR 0838249 (87f:26006)
  • 19. Ch. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comput. 45 (1985) 463-469.MR 0804935 (86j:65181)
  • 20. Ch. Lubich, On the numerical solution of Volterra equations with unbounded nonlinearity, J. Integral Equations 10, Suppl. (1985) 175-183. MR 0831243 (87k:65154)
  • 21. Ch. Lubich, Convolution quadrature and discretized operational calculus. I, Numer. Math. 52 (1988) 129-145. MR 0923707 (89g:65018)
  • 22. Ch. Lubich, Convolution quadrature revisited, BIT 44 (2004) 503-514.MR 2106013 (2005f:65175)
  • 23. Ch. Lubich and A. Schädle, Fast convolution for nonreflecting boundary conditions, SIAM J. Sci. Comp. 24 (2002), 161-182. MR 1924419 (2003h:44007)
  • 24. Ch. Lubich, I.H. Sloan, V. Thomée, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term, Math. Comp. 65 (1996), 1-17. MR 1322891 (96d:65207)
  • 25. F. Mainardi and P. Paradisi, Fractional diffusive waves, J. Comput. Acoustics 9 (2001) 1417-1436. MR 1881799 (2002k:76121)
  • 26. W. McLean and V. Thomée, Numerical solution of an evolution equation with a positive-type memory term, J. Austral. Math. Soc. Ser. 35 (1993) 23-70.MR 1225703 (94e:65094)
  • 27. W. McLean, V. Thomée, and L. Wahlbin, Discretizations with variable time steps of an evolution equation with a positive-type memory term, J. Comput. Appl. Math. (1996) 49-69.MR 1391611 (97b:65073)
  • 28. R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Physics Reports 339 (2000) 1-77.MR 1809268 (2001k:82082)
  • 29. R. Metzler and J. Klafter, Accelerating Brownian motion: a fractional dynamics approach to fast diffusion, Europhys. Lett. 51 (2000) 492-498.
  • 30. C. Palencia, The sharp resolvent estimates for the one-dimensional discrete Laplacian (in preparation).
  • 31. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983. MR 0710486 (85g:47061)
  • 32. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.MR 1658022 (99m:26009)
  • 33. J. Prüss, Evolutionary Integral Equations and Applications. Birkhäuser, Basel, 1993.MR 1238939 (94h:45010)
  • 34. B. Ross, Fractional Calculus, Math. Mag. 50 (1977) 115-122. MR 0447500 (56:5811)
  • 35. J. M. Sanz-Serna, A numerical method for a partial integro-differential equation, SIAM J. Numer. Anal. 25 (1988) 319-327. MR 0933727 (89d:65113)
  • 36. T. Tang, A finite difference scheme for partial integro-differential equations with a weakly singular kernel, Appl. Numer. Math. 11 (1993) 309-319.MR 1199854 (93h:65169)
  • 37. T. Tang, A note on collocation methods for Volterra integro-differential equations with weakly singular kernels, IMA J. Numer. Anal. 13 (1993) 93-99.MR 1199031 (93k:65111)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65R20, 65M15, 26A33, 45K05

Retrieve articles in all journals with MSC (2000): 65R20, 65M15, 26A33, 45K05


Additional Information

Eduardo Cuesta
Affiliation: Departamento de Matemática Aplicada, Escuela Politécnica, Universidad de Valladolid, Francisco de Mendizábal 1, 47014, Valladolid, Spain
Email: eduardo@mat.uva.es

Christian Lubich
Affiliation: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
Email: lubich@na.uni-tuebingen.de

Cesar Palencia
Affiliation: Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005, Valladolid, Spain
Email: palencia@mac.cie.uva.es

DOI: https://doi.org/10.1090/S0025-5718-06-01788-1
Keywords: Anomalous diffusion, parabolic equation with memory, time discretization, convolution quadrature, fractional BDF method, error analysis, regularity
Received by editor(s): January 20, 2004
Received by editor(s) in revised form: September 29, 2004
Published electronically: January 23, 2006
Additional Notes: The first and third authors were supported by Grant MCYT BFM2001-2013 cofinanced by FEDER funds. The second author was supported by DFG SFB 382
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society