Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Computation of capacity

Authors: Thomas Ransford and Jérémie Rostand
Journal: Math. Comp. 76 (2007), 1499-1520
MSC (2000): Primary 65E05; Secondary 31A15, 90C05
Published electronically: January 24, 2007
MathSciNet review: 2299786
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This article introduces a method for computing upper and lower bounds for the logarithmic capacity of a compact plane set. If the set has the Hölder continuity property, then these bounds converge to the value of the capacity. A number of examples are discussed in detail, including the Cantor middle-third set, for which we estimate $ c(E)\approx0.220949102189507$.

References [Enhancements On Off] (What's this?)

  • 1. L. Baribeau, D. Brunet, T. Ransford, J. Rostand, Iterated function systems, capacity and Green's functions, Comput. Methods Funct. Theory 4 (2004), 47-58. MR 2081665 (2005f:31003)
  • 2. J. Berntsen, T. O. Espelid, A. Genz, Algorithm 698: DCUHRE: an adaptive multidimensional integration routine for a vector of integrals, ACM Trans. Math. Software 17 (1991), 452-456. MR 1140035
  • 3. D. G. Cantor, On an extension of the definition of transfinite diameter and some applications, J. Reine Angew. Math. 316 (1980), 160-207. MR 581330 (81m:12002)
  • 4. L. Carleson, T. W. Gamelin, Complex dynamics, Springer, New York, 1993. MR 1230383 (94h:30033)
  • 5. L. Carleson, V. Totik, Hölder continuity of Green's functions, Acta Sci. Math. (Szeged) 70 (2004), 557-608. MR 2107529 (2005h:30052)
  • 6. T. A. Driscoll, Algorithm 756: A MATLAB toolbox for Schwarz-Christoffel mapping, ACM Trans. Math. Software, 22 (1996), 168-186; driscoll/SC.
  • 7. M. Embree, L. N. Trefethen, Green's functions for multiply connected domains via conformal mapping, SIAM Rev. 41 (1999), 745-761. MR 1722999 (2000h:30053)
  • 8. K. J. Falconer, Fractal geometry. Mathematical foundations and applications, 2nd ed., Wiley, Chichester, 2003. MR 2118797 (2006b:28001)
  • 9. S. Mehrotra, On the Implementation of a Primal-Dual Interior Point Method SIAM J. Optimization 2 (1992), 575-601. MR 1186163 (93g:90047)
  • 10. Ch. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975. MR 0507768 (58:22526)
  • 11. Ch. Pommerenke, Uniformly perfect sets and the Poincaré metric, Arch. Math. 32 (1979), 192-199. MR 534933 (80j:30073)
  • 12. Ch. Pommerenke, Boundary behaviour of conformal maps, Springer, Berlin, 1992. MR 1217706 (95b:30008)
  • 13. T. Ransford, Potential theory in the complex plane, Cambridge University Press, Cambridge, 1995. MR 1334766 (96e:31001)
  • 14. J. Rostand, Computing logarithmic capacity with linear programming, Experiment. Math. 6 (1997), 221-238 MR 1481591 (98f:65032)
  • 15. J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, American Mathematical Society, Providence RI, 1969. MR 0218588 (36:1672b)
  • 16. J. Wang, The theory of games, Oxford University Press, Oxford, 1988. MR 0969605 (90a:90219)
  • 17. H. Widom, Extremal polynomials associated with a system of curves in the complex plane, Adv. in Math 3 (1969), 127-232. MR 0239059 (39:418)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65E05, 31A15, 90C05

Retrieve articles in all journals with MSC (2000): 65E05, 31A15, 90C05

Additional Information

Thomas Ransford
Affiliation: Département de mathématiques et de statistique, Université Laval, Québec (QC), Canada G1K 7P4

Jérémie Rostand
Affiliation: Département de mathématiques et de statistique, Université Laval, Québec (QC), Canada G1K 7P4

Keywords: Capacity, matrix game, H\"older continuity property, Cantor set
Received by editor(s): January 18, 2005
Received by editor(s) in revised form: July 6, 2005
Published electronically: January 24, 2007
Additional Notes: The first author was supported by grants from NSERC and the Canada Research Chairs program
The second author was supported by a grant from NSERC
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society