Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

New integer representations as the sum of three cubes


Authors: Michael Beck, Eric Pine, Wayne Tarrant and Kim Yarbrough Jensen
Journal: Math. Comp. 76 (2007), 1683-1690
MSC (2000): Primary 11D25; Secondary 11Y50, 11N36.
DOI: https://doi.org/10.1090/S0025-5718-07-01947-3
Published electronically: March 14, 2007
MathSciNet review: 2299795
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a new algorithm for finding integer solutions to $ x^3 + y^3 + z^3 = k$ for specific values of $ k$. We use this to find representations for values of $ k$ for which no solution was previously known, including $ k=30$ and $ k=52$.


References [Enhancements On Off] (What's this?)

  • 1. Eric Bach and Jeffrey Shallit, Algorithmic number theory (1996), 160-161. MR 1406794 (97e:11157)
  • 2. Andrew Bremner, On sums of three cubes, Canadian Mathematical Society Conference Proceedings 15 (1995), 87-91. MR 1353923 (96g:11024)
  • 3. J.W.S. Cassels, A Note on the Diophantine Equation $ x^3 + y^3 + z^3 = 3$, Mathematics of Computation 44 (1985), 265. MR 0771049 (86d:11021)
  • 4. W. Conn and L.N. Vaserstein, On Sums of Three Integral Cubes, Contemporary Mathematics 166 (1994), 285-294. MR 1284068 (95g:11128)
  • 5. Noam Elkies, $ <$elkies@abel.math.harvard.edu$ >$ ``x^3 + y^3 + z^3 = d," 9 July 1996, $ <$nmbrthry@listserv.nodak.edu$ >$ via $ <$http://listserv.nodak.edu/archives/nmbrthry.html$ >$.
  • 6. V.L. Gardiner, R.B. Lazarus, and P.R. Stein, Solutions of the Diophantine Equation $ x^3 + y^3 = z^3 - d$, Mathematics of Computation 18 (1964), 408-413. MR 0175843 (31:119)
  • 7. D.R. Heath-Brown, Searching for Solutions of $ x^3 + y^3 + z^3 = k$, Seminaire de Theorie des Nombres, (1989-1990), 71-76. MR 1476729 (98f:11025)
  • 8. D.R. Heath-Brown, W.M. Lioen, and H.J.J. te Riele, On Solving the Diophantine Equation $ x^3 + y^3 + z^3 = k$ on a Vector Computer, Mathematics of Computation 61 (1993), 235-244. MR 1202610 (94f:11132)
  • 9. Kenji Koyama, Tables of solutions of the Diophantine equation $ x^3 + y^3 + z^3 = n$, Mathematics of Computation 62 (1994), 941-942.
  • 10. Kenji Koyama, Yukio Tsuruoka, and Hiroshi Sekigawa, On Searching for Solutions of the Diophantine Equation $ x^3 + y^3 + z^3 = n$, Mathematics of Computation 66 (1997), 841-851. MR 1401942 (97m:11041)
  • 11. D.H. Lehmer, On the Diophantine Equation $ x^3 + y^3 + z^3 = 1$, Journal of the London Mathematical Society 31 (1956), 275-280. MR 0078397 (17:1187c)
  • 12. Richard F. Lukes, A Very Fast Electronic Number Sieve, University of Manitoba doctoral thesis, 1995.
  • 13. Kurt Mahler, Note On Hypothesis K of Hardy and Littlewood, Journal of the London Mathematical Society 11 (1936), 136-138.
  • 14. J.C.P. Miller and M.F.C. Woollett, Solution of the Diophantine Equation $ x^3 + y^3 + z^3 = k$, Journal of the London Mathematical Society 30 (1955), 101-110. MR 0067916 (16:797e)
  • 15. L.J. Mordell, On Sums of Three Cubes, Journal of the London Mathematical Society 17 (1942), 139-144. MR 0007761 (4:189d)
  • 16. L.J. Mordell, On an Infinity of Integer Solutions of $ ax^3 + ay^3 + bz^3 = bc^3$, Journal of the London Mathematical Society 30 (1955), 111-113. MR 0067917 (16:798a)
  • 17. S. Ryley, The Ladies' Diary 122 (1825), 35.
  • 18. Manny Scarowsky and Abraham Boyarsky, A Note on the Diophantine Equation $ x^n + y^n + z^n = 3$, Mathematics of Computation 42 (1984), 235-237. MR 0726000 (85c:11029)
  • 19. Gerald Tenenbaum, Introduction to analytic and probablistic number theory (1995), 200-202. MR 1342300 (97e:11005b)
  • 20. R.C. Vaughan, A new iterative method in Waring's problem, Acta Mathematica 162 (1989), 1-71. MR 0981199 (90c:11072)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11D25, 11Y50, 11N36.

Retrieve articles in all journals with MSC (2000): 11D25, 11Y50, 11N36.


Additional Information

Michael Beck
Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
Email: mbeck@math.uga.edu

Eric Pine
Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
Email: epine@math.uga.edu

Wayne Tarrant
Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602

Kim Yarbrough Jensen
Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602

DOI: https://doi.org/10.1090/S0025-5718-07-01947-3
Received by editor(s): February 7, 2002
Received by editor(s) in revised form: October 8, 2005
Published electronically: March 14, 2007
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society