Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On univoque Pisot numbers


Authors: Jean-Paul Allouche, Christiane Frougny and Kevin G. Hare
Journal: Math. Comp. 76 (2007), 1639-1660
MSC (2000): Primary 11R06; Secondary 11A67
DOI: https://doi.org/10.1090/S0025-5718-07-01961-8
Published electronically: January 10, 2007
MathSciNet review: 2299792
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study Pisot numbers $ \beta \in (1, 2)$ which are univoque, i.e., such that there exists only one representation of $ 1$ as $ 1 = \sum_{n \geq 1} s_n\beta^{-n}$, with $ s_n \in \{0, 1\}$. We prove in particular that there exists a smallest univoque Pisot number, which has degree $ 14$. Furthermore we give the smallest limit point of the set of univoque Pisot numbers.


References [Enhancements On Off] (What's this?)

  • 1. J.-P. Allouche, Théorie des Nombres et Automates, Thèse d'État, Bordeaux, 1983.
  • 2. J.-P. Allouche, M. Cosnard, Itérations de fonctions unimodales et suites engendrées par automates, C. R. Acad. Sci. Paris, Sér. 1 296 (1983) 159-162. MR 693191 (85f:58082b)
  • 3. J.-P. Allouche, M. Cosnard, The Komornik-Loreti constant is transcendental, Amer. Math. Monthly 107 (2000) 448-449. MR 1763399
  • 4. J.-P. Allouche, M. Cosnard, Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set, Acta Math. Hung. 91 (2001) 325-332. MR 1912007 (2003f:11013)
  • 5. J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in C. Ding, T. Helleseth and H. Niederreiter (Eds.) Sequences and their applications, Proceedings of SETA'98, Springer, 1999, pp. 1-16. MR 1843077 (2002e:11025)
  • 6. M. Amara, Ensembles fermés de nombres algébriques, Ann. Sci. École Norm. Sup. 83 (1966) 215-270. MR 0237459 (38:5741)
  • 7. M.-J. Bertin, A. Descomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J.-P. Schreiber, Pisot and Salem numbers, Birkhäuser, 1992. MR 1187044 (93k:11095)
  • 8. A. Bertrand, Développements en base de Pisot et répartition modulo $ 1$, C. R. Acad. Sci. Paris, Sér. A-B 285 (1977) 419-421. MR 0447134 (56:5449)
  • 9. P. Borwein, Computational excursions in analysis and number theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 10, Springer-Verlag, New York, 2002. MR 1912495 (2003m:11045)
  • 10. D. W. Boyd, Pisot and Salem numbers in intervals of the real line, Math. Comp. 32 (1978) 1244-1260. MR 0491587 (58:10812)
  • 11. D. W. Boyd, Pisot numbers in the neighbourhood of a limit point, I, J. Number Theory 21 (1985) 17-43. MR 804914 (87c:11096a)
  • 12. D. W. Boyd, Pisot numbers in the neighborhood of a limit point, II, Math. Comp. 43 (1984) 593-602. MR 758207 (87c:11096b)
  • 13. D. W. Boyd, Salem numbers of degree four have periodic expansions, in J.-H. De Coninck, C. Levesque (Eds.), Théorie des Nombres, Québec, 1987, Walter De Gruyter, 1989, pp. 57-64. MR 1024551 (90j:11071)
  • 14. D. W. Boyd, On beta expansions for Pisot numbers, Math. Comp. 65 (1996) 841-860. MR 1325863 (96g:11090)
  • 15. D. W. Boyd, On the beta expansion for Salem numbers of degree $ 6$, Math. Comp. 65 (1996) 861-875, S29-S31. MR 1333306 (96g:11091)
  • 16. K. Dajani and C. Kraaikamp, From greedy to lazy expansions and their driving dynamics, Expo. Math. 20 (2002) 315-327. MR 1940010 (2003h:11089)
  • 17. Z. Daróczy, I. Kátai, Univoque sequences, Publ. Math. Debrecen 42 (1993) 397-407. MR 1229687 (94i:11011)
  • 18. Z. Daróczy, I. Kátai, On the structure of univoque numbers, Publ. Math. Debrecen 46 (1995) 385-408. MR 1336377 (96h:11006)
  • 19. J. Dufresnoy, Ch. Pisot, Étude de certaines fonctions méromorphes bornées sur le cercle unité. Application à un ensemble fermé d'entiers algébriques, Ann. Sci. École Norm. Sup. 72 (1955) 69-92. MR 0072902 (17:349d)
  • 20. P. Erdos, I. Joó, V. Komornik, Characterization of the unique expansions $ 1=\sum_{i=1}^{\infty} q^{-n_i}$, and related problems, Bull. Soc. Math. France 118 (1990) 377-390. MR 1078082 (91j:11006)
  • 21. P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Letters 8 (2001) 447-472. MR 1851269 (2002i:11009)
  • 22. V. Komornik, P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (1998) 636-639. MR 1633077 (99k:11017)
  • 23. V. Komornik, P. Loreti, A. Petho, The smallest univoque number is not isolated, Publ. Math. Debrecen 62 (2003) 429-435. MR 2008106 (2005b:11010)
  • 24. M. Lothaire, Algebraic combinatorics on words, Cambridge University Press, 2002. MR 1905123 (2003i:68115)
  • 25. R. C. Lyndon and M. P. Schützenberger, The equation $ A^M=b^Nc^P$ in a free group, Michigan Math. J. 9 (1962) 289-298. MR 0162838 (29:142)
  • 26. W. Parry, On the $ \beta$-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416. MR 0142719 (26:288)
  • 27. A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. MR 0097374 (20:3843)
  • 28. R. Salem, Power series with integral coefficients, Duke Math. J. 12 (1945) 153-172. MR 0011720 (6:206b)
  • 29. K. Schmidt, On periodic expansions of Pisot and Salem numbers, Bull. London Math. Soc. 12 (1980) 269-278. MR 576976 (82c:12003)
  • 30. F. L. Talmoudi, Sur les nombres de $ S \cap [1,2]$, C. R. Acad. Sci. Paris, Sér. Math. 285 (1977) 969-971. MR 507210 (80c:12003)
  • 31. F. L. Talmoudi, Sur les nombres de $ S \cap [1,2[$, C. R. Acad. Sci. Paris, Sér. Math. 287 (1978) 739-741. MR 516773 (80a:12004)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11R06, 11A67

Retrieve articles in all journals with MSC (2000): 11R06, 11A67


Additional Information

Jean-Paul Allouche
Affiliation: CNRS, LRI, Bâtiment 490, Université Paris-Sud, 91405 Orsay Cedex, France
Email: allouche@lri.fr

Christiane Frougny
Affiliation: LIAFA, CNRS UMR 7089, 2 place Jussieu, 75251 Paris Cedex 05, France, and Université Paris 8
Email: Christiane.Frougny@liafa.jussieu.fr

Kevin G. Hare
Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email: kghare@math.uwaterloo.ca

DOI: https://doi.org/10.1090/S0025-5718-07-01961-8
Keywords: Univoque, Pisot number, beta-expansion
Received by editor(s): June 13, 2006
Received by editor(s) in revised form: August 15, 2006
Published electronically: January 10, 2007
Additional Notes: Research of the first author was partially supported by MENESR, ACI NIM 154 Numération.
Research of the third author was supported, in part, by NSERC of Canada.
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society