Uniform error estimates in the finite element method for a singularly perturbed reaction-diffusion problem

Author:
Dmitriy Leykekhman

Journal:
Math. Comp. **77** (2008), 21-39

MSC (2000):
Primary 65N30

Published electronically:
May 14, 2007

MathSciNet review:
2353942

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the problem with homogeneous Neumann boundary condition in a bounded smooth domain in . The whole range is treated. The Galerkin finite element method is used on a globally quasi-uniform mesh of size ; the mesh is fixed and independent of .

A precise analysis of how the error at each point depends on and is presented. As an application, first order error estimates in , which are uniform with respect to , are given.

**1.**I. A. Blatov,*On the Galerkin finite-element method for elliptic quasilinear singularly perturbed boundary value problems. I*, Differentsial′nye Uravneniya**28**(1992), no. 7, 1168–1177, 1285 (Russian, with Russian summary); English transl., Differential Equations**28**(1992), no. 7, 931–940 (1993). MR**1201213****2.**C. Clavero, J. L. Gracia, and E. O’Riordan,*A parameter robust numerical method for a two dimensional reaction-diffusion problem*, Math. Comp.**74**(2005), no. 252, 1743–1758. MR**2164094**, 10.1090/S0025-5718-05-01762-X**3.**S. D. Èĭdel′man and S. D. Ivasišen,*Investigation of the Green’s matrix of a homogeneous parabolic boundary value problem*, Trudy Moskov. Mat. Obšč.**23**(1970), 179–234 (Russian). MR**0367455****4.**Wiktor Eckhaus,*Asymptotic analysis of singular perturbations*, Studies in Mathematics and its Applications, vol. 9, North-Holland Publishing Co., Amsterdam-New York, 1979. MR**553107****5.**N. Kopteva,*Maximum norm error analysis of a 2d singularly perturbed semilinear reaction-diffusion problem*, to appear in Math. Comp.**6.**J.P. Krasovskii,*Properties of Green's function and generalized solutions of elliptic boundary value problems*, Soviet Mathematics (Translations of Doklady Academy of Sciences of the USSR) (1969), 54-120.**7.**Alfred H. Schatz,*Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. I. Global estimates*, Math. Comp.**67**(1998), no. 223, 877–899. MR**1464148**, 10.1090/S0025-5718-98-00959-4**8.**A. H. Schatz, V. Thomée, and L. B. Wahlbin,*Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations*, Comm. Pure Appl. Math.**51**(1998), no. 11-12, 1349–1385. MR**1639143**, 10.1002/(SICI)1097-0312(199811/12)51:11/12<1349::AID-CPA5>3.3.CO;2-T**9.**A. H. Schatz and L. B. Wahlbin,*Interior maximum norm estimates for finite element methods*, Math. Comp.**31**(1977), no. 138, 414–442. MR**0431753**, 10.1090/S0025-5718-1977-0431753-X**10.**A. H. Schatz and L. B. Wahlbin,*On the quasi-optimality in 𝐿_{∞} of the 𝐻¹-projection into finite element spaces*, Math. Comp.**38**(1982), no. 157, 1–22. MR**637283**, 10.1090/S0025-5718-1982-0637283-6**11.**A. H. Schatz and L. B. Wahlbin,*On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions*, Math. Comp.**40**(1983), no. 161, 47–89. MR**679434**, 10.1090/S0025-5718-1983-0679434-4**12.**V. Thomée and L. B. Wahlbin,*Maximum-norm estimates for finite-element methods for a strongly damped wave equation*, BIT**44**(2004), no. 1, 165–179. MR**2057368**, 10.1023/B:BITN.0000025091.78408.e4**13.**Lars B. Wahlbin,*Local behavior in finite element methods*, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 353–522. MR**1115238**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
65N30

Retrieve articles in all journals with MSC (2000): 65N30

Additional Information

**Dmitriy Leykekhman**

Affiliation:
Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005

Email:
dmitriy@caam.rice.edu

DOI:
https://doi.org/10.1090/S0025-5718-07-02015-7

Keywords:
Finite element,
singularly perturbed,
pointwise estimates,
reaction-diffusion

Received by editor(s):
June 8, 2005

Received by editor(s) in revised form:
November 18, 2006

Published electronically:
May 14, 2007

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.