Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



The Abel Lemma and the $ q$-Gosper Algorithm

Authors: Vincent Y. B. Chen, William Y. C. Chen and Nancy S. S. Gu
Journal: Math. Comp. 77 (2008), 1057-1074
MSC (2000): Primary 33D15; Secondary 33F10
Published electronically: October 24, 2007
MathSciNet review: 2373192
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Chu has recently shown that the Abel lemma on summation by parts reveals the telescoping nature of Bailey's $ {}_6\psi_6$ bilateral summation formula. We present a systematic approach to compute Abel pairs for bilateral and unilateral basic hypergeometric summation formulas by using the $ q$-Gosper algorithm. It is demonstrated that Abel pairs can be derived from Gosper pairs. This approach applies to many classical summation formulas.

References [Enhancements On Off] (What's this?)

  • 1. S. A. Abramov, P. Paule, and M. Petkovšek, $ q$-Hypergeometric solutions of $ q$-difference equations, Discrete Math. 180 (1998), 3-22. MR 1603685 (99f:39001)
  • 2. G. E. Andrews, On Ramanujan's summation of $ _{1}\psi_1(a,b,z)$, Proc. Amer. Math. Soc. 22 (1969), 552-553. MR 0241703 (39:3042)
  • 3. G. E. Andrews, On a transformation of bilateral series with applications, Proc. Amer. Math. Soc. 25 (1970), 554-558. MR 0257413 (41:2064)
  • 4. G. E. Andrews and R. Askey, A simple proof of Ramanujan's summation of the $ _{1}\psi_1$, Aequationes Math. 18 (1978), 333-337. MR 522519 (80h:33004)
  • 5. W. N. Bailey, Series of hypergeometric type which are infinite in both directions, Quart. J. Math. (Oxford) 7 (1936), 105-115.
  • 6. B. C. Berndt, Ramanujan's theory of theta-functions, In: Theta Functions from the Classical to the Modern, M. R. Murty, ed., CRM Proceedings and Lecture Notes, 1, Amer. Math. Soc., Providence, 1993, pp. 1-63. MR 1224050 (94m:11054)
  • 7. H. Böing and W. Koepf, Algorithm for $ q$-hypergeometric summation in computer algebra, J. Symbolic Comput. 28 (1999), 777-799. MR 1750546 (2001j:33019)
  • 8. W. Y. C. Chen, Q. H. Hou, and Y. P. Mu, Nonterminating basic hypergeometric series and the $ q$-Zeilberger algorithm, arXiv:math.CO/0509281.
  • 9. W. C. Chu, Bailey's very well-poised $ _6\psi_6$-series identity, J. Combin. Theory, Ser. A 113 (2006), 966-979 . MR 2244127
  • 10. G. Gasper and M. Rahman, Basic Hypergeometric Series, second ed., Cambridge University Press, Cambridge, 2004. MR 2128719 (2006d:33028)
  • 11. W. Hahn, Über Polynome, die gleichzeitig zwei verschiedenen Orthogonalsystemen angehören, Math. Nachr. 2 (1949), 263-278. MR 0032858 (11:356f)
  • 12. M. E. H. Ismail, A simple proof of Ramanujan's $ _{1}\psi_1$ sum, Proc. Amer. Math. Soc. 63 (1977), 185-186. MR 0508183 (58:22695)
  • 13. M. Jackson, On Lerch's transcendant and the basic bilateral hypergeometric series $ _{2}\psi_2$, J. London Math. Soc. 25 (1950), 189-196. MR 0036882 (12:178f)
  • 14. T. H. Koornwinder, On Zeilberger's algorithm and its $ q$-analogue, J. Comput. Appl. Math. 48 (1993), 91-111. MR 1246853 (95b:33011)
  • 15. M. Mohammed and D. Zeilberger, Sharp upper bounds for the orders of the recurrences outputted by the Zeilberger and $ q$-Zeilberger Algorithms, J. Symbolic Comput. 39 (2005), 201-207. MR 2169800
  • 16. P. Paule, Short and easy computer proofs of the Roger-Ramanujan identities and of identities of similar type, Electron. J. Combin. 1 (1994), R10. MR 1293400 (95g:11099)
  • 17. P. Paule and M. Schorn, A Mathematica version of Zeilberger's algorithm for proving binomial coefficients identities, J. Symbolic Comput. 20 (1995), 673-698. MR 1395420 (97j:39006)
  • 18. A. Riese, A generalization of Gosper's algorithm to bibasic hypergeometric summation, Electron. J. Combin. 3 (1996), R19. MR 1394550 (97h:33031)
  • 19. M. Schlosser, Abel-Rothe type generalizations of Jacobi's triple product identity, in ``Theory and Applications of Special Functions. A Volume Dedicated to Mizan Rahman" (M. E. H. Ismail and E. Koelink, eds.), Dev. Math. 13 (2005), 383-400. MR 2132472 (2006b:33032)
  • 20. M. Schlosser, Inversion of bilateral basic hypergeometric series, Electron. J. Combin. 10 (2003), R10. MR 1975760 (2004d:33017)
  • 21. H. S. Shukla, A note on the sums of certain bilateral hypergeometric series, Proc. Cambridge Phil. Soc. 55 (1959), 262-266. MR 0104839 (21:3590)
  • 22. H. S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and ``$ q$") multisum/integral identities, Invent. Math. 108 (1992), 575-633. MR 1163239 (93k:33010)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 33D15, 33F10

Retrieve articles in all journals with MSC (2000): 33D15, 33F10

Additional Information

Vincent Y. B. Chen
Affiliation: Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China

William Y. C. Chen
Affiliation: Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China

Nancy S. S. Gu
Affiliation: Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China

Keywords: The Abel lemma, Abel pairs, basic hypergeometric series, the $q$-Gosper algorithm, Gosper pairs
Received by editor(s): July 26, 2006
Received by editor(s) in revised form: August 2, 2006
Published electronically: October 24, 2007
Additional Notes: This work was supported by the 973 Project on Mathematical Mechanization, the Ministry of Education, the Ministry of Science and Technology, and the National Science Foundation of China.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society