Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A mortar edge element method with nearly optimal convergence for three-dimensional Maxwell's equations


Authors: Qiya Hu, Shi Shu and Jun Zou
Journal: Math. Comp. 77 (2008), 1333-1353
MSC (2000): Primary 65N30, 65N55
DOI: https://doi.org/10.1090/S0025-5718-08-02057-7
Published electronically: January 11, 2008
MathSciNet review: 2398771
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we are concerned with mortar edge element methods for solving three-dimensional Maxwell's equations. A new type of Lagrange multiplier space is introduced to impose the weak continuity of the tangential components of the edge element solutions across the interfaces between neighboring subdomains. The mortar edge element method is shown to have nearly optimal convergence under some natural regularity assumptions when nested triangulations are assumed on the interfaces. A generalized edge element interpolation is introduced which plays a crucial role in establishing the nearly optimal convergence. The theoretically predicted convergence is confirmed by numerical experiments.


References [Enhancements On Off] (What's this?)

  • 1. A. Ben Abdallah, F. Ben Belgacem and Y. Maday, Mortaring the two-dimensional ``Nedelec'' finite elements for the discretization of the Maxwell equations. To appear in M3AS.
  • 2. A. Alonso and A. Valli, Some remarks on the characterization of the space of tangential traces of $ H({\bf curl};\Omega)$ and the construction of an extension operator, Manuscr. Math., 89(1996), 159-178. MR 1371994 (96k:46057)
  • 3. A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comp., 68(1999), 607-631. MR 1609607 (99i:78002)
  • 4. C. Amrouche, C. Bernardi, M. Dauge and V. Girault. Vector Potentials in three-dimensional nonsmooth domains, Math. Meth. Appl. Sci., 21(1998), 823-864. MR 1626990 (99e:35037)
  • 5. D. Arnold, R. Falk and R. Winther. Multigrid in $ H({\rm div})$ and $ H({\bf curl})$, Numer. Math., 85(2000), 175-195. MR 1754719 (2001d:65161)
  • 6. F. Assous, P. Degond, E. Heintzé, P. Raviart and J. Segre, On a finite-element method for solving the three-dimensional Maxwell equations, J. Comput. Phys., 109(1993), 222-237. MR 1253460 (94j:78003)
  • 7. F. Ben Belgacem, A. Buffa and Y. Maday, The mortar finite element method for 3D Maxwell equations: first results, SIAM J. Numer. Anal., 39(2001), 880-901 MR 1860449 (2003i:78019)
  • 8. F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional finite elements, M$ ^2$AN 31(1997), 289-302. MR 1437123 (98e:65107)
  • 9. C. Bernardi, Y. Maday and A. Patera, A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear partial differential equations and their applications (H. Brezis and J. Lions (eds.)), Pitman, 1994.
  • 10. M. Birman and M. Solomyak, $ L_2$-theory of the Maxwell operator in arbitrary domains, Russian Math. Surveys, 42(1987), 75-96. MR 933995 (89e:35127)
  • 11. S. Börm and R. Hiptmair, Multigrid computation of axismmetric electromagnetic fields, Adv. Comp. Math., 16(2001), 331-356. MR 1894928 (2003d:78042)
  • 12. M. Cessenat, Mathematical methods in electromagnetism, World Scientific, River Edge, NJ, 1998 MR 1409140 (97j:78001)
  • 13. Z. Chen, Q. Du and J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients, SIAM J. Numer. Anal., 37(2000), 1542-1570. MR 1759906 (2001h:78044)
  • 14. P. Ciarlet, Jr. and J. Zou, Finite element convergence for the Darwin model to Maxwell's equations, RAIRO Math. Modelling Numer. Anal., 31(1997), 213-249. MR 1437121 (98b:78001)
  • 15. P. Ciarlet, Jr. and J. Zou, Fully discrete finite element approaches for time-dependent Maxwell's equations, Numer. Math., 82(1999), 193-219. MR 1685459 (2000c:65083)
  • 16. R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology, Springer-Verlag, New York, 1988. MR 0969367 (89m:00001)
  • 17. V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986. MR 0851383 (88b:65129)
  • 18. J. Gopalakrishnan and J. Pasciak, Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell's equations, Math. Comput., 72(2003), 1-16. MR 1933811 (2003i:78020)
  • 19. R. Hiptmair, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal., 36(1998), 204-225. MR 1654571 (99j:65229)
  • 20. R. Hiptmair, Finite elements in computational electromagnetism, Acta Numerica, 11(2002), 237-339. MR 2009375 (2004k:78028)
  • 21. R. Hoppe, Mortar edge element methods in $ R^3$, East-West J. Numer. Anal., 7(1999), 159-173. MR 1719615 (2001c:65155)
  • 22. Q. Hu, Numerical Integrations and Unit Resolution Multipliers for Domain Decomposition Methods with Nonmatching Grids, Computing, 74(2005), 101-129. MR 2133691 (2005k:65275)
  • 23. Q. Hu, G. Liang and J. Lui, The construction of preconditioner for domain decomposition methods with polynomial multipliers, J. Comp. Math., 19(2001), 213-224 MR 1816686 (2001k:65186)
  • 24. Q. Hu and J. Zou, Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems, Numer. Math., 93 (2002), 333-359. MR 1941400 (2004c:65029)
  • 25. Q. Hu and J. Zou, Nonlinear inexact Uzawa algorithms for linear and nonlinear saddle-point problems, SIAM J. Optim., 16 (2006), 798-825. MR 2197557 (2006j:65087)
  • 26. Q. Hu and J. Zou, A nonoverlapping domain decomposition method for Maxwell's equations in three dimensions, SIAM J. Numer. Anal., 41(2003), 1682-1708. MR 2035002 (2005a:65131)
  • 27. Q. Hu and J. Zou, Substructuring preconditioners for saddle-point problems arising from Maxwell's equations in three dimensions, Math. Comput., 73(2004), 35-61. MR 2034110 (2004m:65197)
  • 28. C. Kim, R. Lazarov, J. Pasciak and P. Vassilevski, Multiplier spaces for the mortar finite element method in three dimensions, SIAM J. Numer. Anal., 39 (2001), 517-538. MR 1860265 (2002g:65143)
  • 29. G. Liang and J. He, The non-conforming domain decomposition method for elliptic problems with Lagrangian multipliers, Chinese J. Num. Math. Appl.15:1(1993), 8-19. MR 1600626
  • 30. P. Monk, Analysis of a finite element method for Maxwell's equations, SIAM J. Numer. Anal., 29(1992), 32-56. MR 1163353 (93k:65096)
  • 31. J. Nédélec, Mixed finite elements in $ R^3$, Numer. Math., 35(1980), 315-341. MR 592160 (81k:65125)
  • 32. R. Nicolaides and D. Wang, Convergence analysis of a covolume scheme for Maxwell's equations in three dimensions, Math. Comp., 67(1998), 947-963. MR 1474654 (98j:65080)
  • 33. J. Pasciak and J. Zhao, Overlapping Schwarz methods in H (curl) on nonconvex domains, East-West J. Numer. Anal., 10(2002), 221-234. MR 1935967 (2003j:65108)
  • 34. A. Toselli and A. Klawonn, A FETI domain decomposition method for edge element approximations in two dimensions with discontinuous coefficients, SIAM J. Numer. Anal., 39(2001), 932-956. MR 1860451 (2002f:65169)
  • 35. A. Toselli, O. Widlund and B. Wohlmuth, A FETI preconditioner for two dimensional edge element approximations of Maxwell's equations on nonmatching grids, SIAM J. Sci. Comput., 23(2001), 92-108. MR 1860906 (2002m:65025)
  • 36. B. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38(2000), 989-1012. MR 1781212 (2001h:65132)
  • 37. J. Xu and J. Zou, Some nonoverlapping domain decomposition methods, SIAM Review, 40(1998), 857-914. MR 1659681 (99m:65241)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 65N55

Retrieve articles in all journals with MSC (2000): 65N30, 65N55


Additional Information

Qiya Hu
Affiliation: LSEC and Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematical and System Sciences, The Chinese Academy of Sciences, Beijing 100080, China
Email: hqy@lsec.cc.ac.cn

Shi Shu
Affiliation: School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan 411105, China
Email: shushi@xtu.edu.cn

Jun Zou
Affiliation: Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Email: zou@math.cuhk.edu.hk

DOI: https://doi.org/10.1090/S0025-5718-08-02057-7
Keywords: Maxwell's equations, N\'ed\'elec finite elements, domain decomposition, nonmatching grids, generalized interpolation, error estimate
Received by editor(s): February 3, 2005
Received by editor(s) in revised form: March 28, 2007
Published electronically: January 11, 2008
Additional Notes: The work of the first author was supported by the Natural Science Foundation of China G10371129, the Key Project of Natural Science Foundation of China G10531080, and the National Basic Research Program of China G2005CB321702
The work of the second author was partially supported by the grant (2005CB321702)
The work of the third author was substantially supported by Hong Kong RGC grants (Project 404407 and Project 404606)
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society