Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computations of Eisenstein series on Fuchsian groups


Author: Helen Avelin
Journal: Math. Comp. 77 (2008), 1779-1800
MSC (2000): Primary 11F72; Secondary 11F03, 11F06, 11Y35.
DOI: https://doi.org/10.1090/S0025-5718-08-02092-9
Published electronically: January 31, 2008
MathSciNet review: 2398794
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present numerical investigations of the value distribution and distribution of Fourier coefficients of the Eisenstein series $ E(z;s)$ on arithmetic and non-arithmetic Fuchsian groups. Our numerics indicate a Gaussian limit value distribution for a real-valued rotation of $ E(z;s)$ as $ \operatorname{Re} s=1/2$, $ \operatorname{Im} s\to \infty$ and also, on non-arithmetic groups, a complex Gaussian limit distribution for $ E(z;s)$ when $ \operatorname{Re} s>1/2$ near $ 1/2$ and $ \operatorname{Im} s\to \infty$, at least if we allow $ \operatorname{Re} s\to 1/2$ at some rate. Furthermore, on non-arithmetic groups and for fixed $ s$ with $ \operatorname{Re} s \ge 1/2$ near $ 1/2$, our numerics indicate a Gaussian limit distribution for the appropriately normalized Fourier coefficients.


References [Enhancements On Off] (What's this?)

  • [Ave03] H. Avelin, On the deformation of cusp forms, U.U.D.M. Report 2003:8, Uppsala, 85 pp. http://www.math.uu.se/research/pub/Avelin2.pdf, 2003.
  • [Ave04] -, Some computations used to prove that $ {\Gamma}_{a,r}$ is a Fuchsian group, 2004, Maple-file http://www.math.uu.se/research/archive/avelin.
  • [Ave07] -, Deformation of $ {\Gamma}_0(5)$-cusp forms, Math. Comp. 76 (2007), 361-384. MR 2261026
  • [Ber72] L. Bers, Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc. 4 (1972), 257-300. MR 0348097 (50:595)
  • [Ber77] M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A: Math. Gen. 10 (1977), no. 12, 2083-2091. MR 0489542 (58:8961)
  • [BR99] J. Bernstein and A. Reznikov, Analytic continuation of representations and estimates of automorphic forms, Ann. of Math. 150 (1999), no. 1, 329-352. MR 1715328 (2001h:11053)
  • [Col85] Y. Colin de Verdiere, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102 (1985), 497-502. MR 818831 (87d:58145)
  • [FL05] D. W. Farmer and S. Lemurell, Deformations of Maass forms, Math. Comp. 74 (2005), no. 252, 1967-1982. MR 2164106 (2007a:11060)
  • [Gut95] A. Gut, An intermediate course in probability, Springer-Verlag, New York, 1995. MR 1353911 (97c:60001)
  • [Hej83] D. A. Hejhal, The Selberg Trace Formula for $ PSL(2,\mathbb{R})$, vol. 2, Lecture Notes in Math. 1001, Springer-Verlag, Berlin, 1983. MR 711197 (86e:11040)
  • [Hej99] -, On eigenfunctions of the Laplacian for Hecke triangle groups, Emerging Applications of Number Theory (D. Hejhal, J. Friedman, M. Gutzwiller, and A. Odlyzko, eds.), Springer-Verlag, 1999, pp. 291-315. MR 1691537 (2000f:11063)
  • [Hel66] H. Helling, Bestimmung der Kommensurabilitätsklasse der Hilbertschen Modulgruppe, Math. Z. 92 (1966), 269-280. MR 0228437 (37:4017)
  • [Hop36] E. Hopf, Fuchsian groups and ergodic theory, Trans. Amer. Math. Soc. 39 (1936), no. 2, 299-314. MR 1501848
  • [HR92] D. A. Hejhal and B. N. Rackner, On the Topography of Maass Waveforms for PSL $ (2,{\bf Z})$, Exp. Math. 1 (1992), no. 4, 275-305. MR 1257286 (95f:11037)
  • [HS01] D. A. Hejhal and A. Strömbergsson, On quantum chaos and Maass waveforms of CM-type, Found. Phys. 31 (2001), no. 3, 519-533. MR 1839791 (2003k:81066)
  • [Lin06] E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. 163 (2006), no. 1, 165-219. MR 2195133 (2007b:11072)
  • [LS95] W. Luo and P. Sarnak, Quantum ergodicity of eigenfunctions on $ {PSL}_2(\bf {Z})\backslash \bf {H}^2$, Publ. Math. IHES 81 (1995), 207-237. MR 1361757 (97f:11037)
  • [LS03] -, Mass equidistribution for Hecke eigenforms, Comm. Pure Appl. Math. LVI (2003), 0874-0891. MR 1990480 (2004e:11038)
  • [LS04] -, Quantum variance for Hecke eigenforms, Ann. Sci. École Norm. Sup. 37 (2004), 769-799. MR 2103474 (2005k:11101)
  • [MS83] C. J. Moreno and F. Shahidi, The fourth moment of Ramanujan $ \tau$-function, Math. Ann. 266 (1983), 233-239. MR 724740 (85i:11039)
  • [PS85] R. S. Phillips and P. Sarnak, On cusp forms for cofinite subgroups of $ {PSL}(2,\mathbb{R})$, Invent. Math. 80 (1985), 339-364. MR 788414 (86m:11037)
  • [Sar01] P. Sarnak, Estimates for Rankin-Selberg $ {L}$-functions and quantum unique ergodicity, J. Funct. Anal. 184 (2001), 419-453. MR 1851004 (2003c:11050)
  • [Sel89] A. Selberg, Göttingen Lectures on Harmonic Analysis, in Collected Papers, vol. 1, Springer-Verlag, 1989, pp. 626-674.
  • [Shn74] A. I. Shnirelman, Ergodic properties of eigenfunctions, Uspekhi Mat. Nauk. 29 (1974), no. 6, 181-182. MR 0402834 (53:6648)
  • [Str05a] A. Strömbergsson, On the Fourier coefficients of Eisenstein series for the hyperbolic plane, in preparation, 2005.
  • [Str05b] -, Remarks on moments of divisor functions, personal communication, 2005.
  • [The05] H. Then, Maass cusp forms for large eigenvalues, Math. Comp. 74 (2005), 363-381. MR 2085897 (2005h:11106)
  • [Zel87] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), no. 4, 919-941. MR 916129 (89d:58129)
  • [Zel91] -, Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series, J. Funct. Anal. 97 (1991), no. 1, 1-49. MR 1105653 (92h:11046)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11F72, 11F03, 11F06, 11Y35.

Retrieve articles in all journals with MSC (2000): 11F72, 11F03, 11F06, 11Y35.


Additional Information

Helen Avelin
Affiliation: Department of Mathematics, Uppsala University, S-751 06 Uppsala, Sweden
Email: helen.avelin@math.uu.se

DOI: https://doi.org/10.1090/S0025-5718-08-02092-9
Keywords: Automorphic forms, spectral theory, computational number theory, Fourier coefficients, explicit machine computations, Phillips-Sarnak conjecture, $K$-Bessel function, Teichm\"{u}ller space.
Received by editor(s): September 21, 2006
Received by editor(s) in revised form: May 16, 2007
Published electronically: January 31, 2008
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society