Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



The zeros of Dedekind zeta functions and class numbers of CM-fields

Authors: Geon-No Lee and Soun-Hi Kwon
Journal: Math. Comp. 77 (2008), 2437-2445
MSC (2000): Primary 11R29, 11R42
Published electronically: June 2, 2008
MathSciNet review: 2429892
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F'/F$ be a finite normal extension of number fields with Galois group $ Gal(F'/F)$. Let $ \chi$ be an irreducible character of $ Gal(F'/F)$ of degree greater than one and $ L(s,\chi)$ the associated Artin $ L$-function. Assuming the truth of Artin's conjecture, we have explicitly determined a zero-free region about $ 1$ for $ L(s,\chi)$. As an application we show that, for a CM-field $ K$ of degree $ 2n$ with solvable normal closure over $ \mathbb{Q}$, if $ n \geq 370$ as well as $ n \notin \{ 384, 400, 416, 448, 512 \}$, then the relative class number of $ K$ is greater than one.

References [Enhancements On Off] (What's this?)

  • [B] S. Bessassi, Bounds for the degrees of CM-fields of class number one, Acta Arith., 106, 3(2003), 213-245. MR 1957106 (2003m:11183)
  • [HR] J. Hoffstein and D. Ramakrishnan, Siegel zeros and cusp forms, Intl. Math. Res. Not. 6 (1995), 279-308. MR 1344349 (96h:11040)
  • [La] S. Lang, Algebraic number theory, Second Edition, Springer-Verlag, 1994. MR 1282723 (95f:11085)
  • [LK] G.-N. Lee and S.-H. Kwon, CM-Fields with relative class number one, Math. Comp., 75 (2006), 997-1013. MR 2197004 (2006k:11216)
  • [LLO] F. Lemmermeyer, S. Louboutin, and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of degree 24, J. Théor. Nombres Bordeaux, 11(1999), 387-406. MR 1745886 (2001j:11104)
  • [Lou] S. Louboutin, Explicit lower bounds for residues at $ s = 1$ of Dedekind zeta functions and relative class numbers of CM-fields, Trans. Amer. Math. Soc., 355(2003), 3079-3098. MR 1974676 (2004f:11134)
  • [M1] V. Kumar Murty, Modular forms and the Chebotarev density theorem, II, Analytic Number Theory (Kyoto, 1996), 287-308, London Math. Soc. Lecture Note Ser., 247, Cambridge Univ. Press, Cambridge, 1997. MR 1694997 (2000g:11094)
  • [M2] V. Kumar Murty, Class numbers of CM-fields with solvable normal closure, Composito Mathematica 127 (2001), 273-287. MR 1845038 (2003a:11147)
  • [Ma] J. Martinet, Character theory and Artin L-functions, in Algebraic Number Fields ($ L$-functions and Galois properties), edited by A. Fröhlich, Academic Press, 1977, pp 1-87. MR 0447187 (56:5502)
  • [MM] M. Ram Murty and V. Kumar Murty, Non-vanishing of $ L$-functions and applications, Progress in Mathematics, vol. 157, Birkhäuser, 1997. MR 1482805 (98h:11106)
  • [Od1] A. M. Odlyzko, On Conductors and Discriminants, in Algebraic Number Fields ($ L$-functions and Galois properties), edited by A. Fröhlich, Academic Press, 1977, pp. 377-407. MR 0453701 (56:11961)
  • [Od2] A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : A survey of recent results, Sém. Théor. Nombres Bordeaux 2 (1990), 119-141. MR 1061762 (91i:11154)
  • [Poi1] G. Poitou, Minorations de discriminants, Sém. Bourbaki, 28e année (1975/76), 136-153. MR 0435033 (55:7995)
  • [Poi2] G. Poitou, Sur les petits discriminants, Sém. Delange-Pisot-Poitou, 18e année, 1976/77. MR 551335 (81i:12007)
  • [W] L. C. Washington, Introduction to cyclotomic fields, 2nd ed. (1997), Grad. Texts in Math. 83, Springer-Verlag. MR 1421575 (97h:11130)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11R29, 11R42

Retrieve articles in all journals with MSC (2000): 11R29, 11R42

Additional Information

Geon-No Lee
Affiliation: Department of Mathematics, Korea University, 136-701, Seoul, Korea

Soun-Hi Kwon
Affiliation: Department of Mathematics Education, Korea University, 136-701, Seoul, Korea

Keywords: CM-fields, class numbers, relative class numbers, Dedekind zeta functions
Received by editor(s): July 6, 2018
Received by editor(s) in revised form: August 22, 2007
Published electronically: June 2, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society