Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On spectral approximations in elliptical geometries using Mathieu functions


Authors: Jie Shen and Li-Lian Wang
Journal: Math. Comp. 78 (2009), 815-844
MSC (2000): Primary 65N35, 65N22, 65F05, 35J05
DOI: https://doi.org/10.1090/S0025-5718-08-02197-2
Published electronically: November 20, 2008
MathSciNet review: 2476561
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider in this paper approximation properties and applications of Mathieu functions. A first set of optimal error estimates are derived for the approximation of periodic functions by using angular Mathieu functions. These approximation results are applied to study the Mathieu-Legendre approximation to the modified Helmholtz equation and Helmholtz equation. Illustrative numerical results consistent with the theoretical analysis are also presented.


References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. Stegun.
    Handbook of Mathematical functions.
    Dover, New York, 1964.
  • 2. R. A. Adams.
    Sobolev spaces.
    Acadmic Press, New York, 1975. MR 0450957 (56:9247)
  • 3. F. A. Alhargan.
    Algorithm for the computation of all Mathieu functions of integer orders.
    ACM Trans. Math. Software, 26:390-407, 2001.
  • 4. F. A. Alhargan and S. R. Judah.
    Frequency response characteristics of multiport planar elliptic patch.
    IEEE Trans. Microwave Theory Tech., MIT-40:1726-1730, 1992.
  • 5. F. A. Alhargan and S. R. Judah.
    Mode charts for confocal annular elliptic resonators.
    IEE Proc-Microwave Antennas Propag., 143(4):358-360, 1996.
  • 6. Fayez A. Alhargan.
    A complete method for the computations of Mathieu characteristic numbers of integer orders.
    SIAM Rev., 38(2):239-255, 1996. MR 1391228 (97h:33036)
  • 7. E. T. Whittaker amd G. N. Watson.
    A course of modern analysis.
    Cambridge University Press, 4th edition, 1927. MR 1424469 (97k:01072)
  • 8. M. Baeva, P. Baev, and A. Kaplan.
    An analysis of the heat transfer from a moving elliptical cylinder.
    J. Phys. D: Appl. Phys., 30:1190-1196, 1997.
  • 9. J. P. Boyd and H. Ma.
    Numerical study of elliptical modons using a spectral method.
    J. Fluid Mech., 221:597-611, 1990.
  • 10. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang.
    Spectral methods.
    Scientific Computation. Springer-Verlag, Berlin, 2006.
    Fundamentals in single domains. MR 2223552 (2007c:65001)
  • 11. R. Courant and D. Hilbert.
    Methods of Mathematical Physics, volume 1.
    Interscience Publishers, 1953. MR 0065391 (16:426a)
  • 12. Qirong Fang, Jie Shen, and Li-Lian Wang.
    A stable and high-order method for acoustic scattering exterior to a two-dimensional elongated domain.
    Submitted to J. Comput. Phys.
  • 13. D. Funaro.
    Polynomial approxiamtions of differential equations.
    Springer-Verlag, 1992. MR 1176949 (94c:65078)
  • 14. Marcus J. Grote and Joseph B. Keller.
    On nonreflecting boundary conditions.
    J. Comput. Phys., 122(2):231-243, 1995. MR 1365434 (96j:65142)
  • 15. Ben-Yu Guo, Jie Shen, and Li-Lian Wang.
    Optimal spectral-Galerkin methods using generalized Jacobi polynomials.
    J. Sci. Comput., 27(1-3):305-322, 2006. MR 2285783 (2008f:65233)
  • 16. Ben-yu Guo and Li-Lian Wang.
    Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces.
    J. Approx. Theory, 128(1):1-41, 2004. MR 2063010 (2005h:41010)
  • 17. J. C. Gutierrez-Vega, M. D. Iturbe-Castillo, and S. Chavez-Cerda.
    Alternative formulation for invariant optical fields: Mathieu beams.
    Opt. Lett., 25(20):1493-1495, 2000.
  • 18. J. C. Gutierrez-Vega, R. M. Rodriguez-Dagnino, M. A. Menesses-Nava, and S. Chavez-Cerda.
    Mathieu functions, a visual approach.
    Am. J. Phys., 71(3):233-242, 2003.
  • 19. T. M. Habashy, J. A. Kong, and W. C. Chew.
    Scalar and vector Mathieu transform pairs.
    J. Appl. Phys., 60:3395-3399, 1986.
  • 20. G. H. Hardy, J. E. Littlewood, and G. Polya.
    Inequalities.
    Cambridge University, Cambridge, UK, 1952. MR 0046395 (13:727e)
  • 21. R. Holland and V. P. Cable.
    Mathieu functions and their applications to scattering by a coated strip.
    IEEE Trans. Electromagnetic Compatibility, EC-34:9-16, 1992.
  • 22. Frank Ihlenburg.
    Finite element analysis of acoustic scattering, volume 132 of Applied Mathematical Sciences.
    Springer-Verlag, New York, 1998. MR 1639879 (99g:65114)
  • 23. C. Pask J. D. Love and C. Winkler.
    Rays and modes on step-index multimode elliptical waveguides.
    IEE J. Microwaves, Optics and Acoustics, 3:231-238, 1979.
  • 24. Ming-Chih Lai.
    Fast direct solver for Poisson equation in a 2D elliptical domain.
    Numer. Methods Partial Differential Equations, 20(1):72-81, 2004. MR 2020251 (2004j:65175)
  • 25. J. E. Lewis and G. Deshpande.
    Models on elliptical cross-section dielectric-tube waveguides.
    IEE J. Microwaves, Optics and Acoustics, 3:112-117, 1979.
  • 26. A. Linder and H. Freese.
    A new method to compute Mathieu functions.
    J. Phys. A, 27:5565-5571, 1994. MR 1295380 (95j:33058)
  • 27. E. Mathieu.
    Le mouvement vibratoire d'une membrane de forme elliptique.
    J. Math. Pures Appl., 13:137-203, 1868.
  • 28. N. W. McLachlan.
    Theory and applications of Mathieu functions.
    Oxford Press, London, 1951. MR 0021158 (9:31b)
  • 29. J. Meixner and F. W. Schäfke.
    Mathieusche funktionen und sphäoidfunktioner.
    Springer, Berlin, 1954. MR 0066500 (16:586g)
  • 30. R. Mittal and S. Balachandar.
    Direct numerical simulation of flow past elliptic cylinders.
    J. Comput. Phys., 124:351-367, 1996.
  • 31. Jean-Claude Nédélec.
    Acoustic and electromagnetic equations, volume 144 of Applied Mathematical Sciences.
    Springer-Verlag, New York, 2001.
    Integral representations for harmonic problems. MR 1822275 (2002c:35003)
  • 32. L. Ruby.
    Applications of the Mathieu equation.
    Am. J. Phys., 64:39-44, 1996. MR 1366704 (96h:34097)
  • 33. Zhang Shangjie and Jin Jianming.
    Computation of special functions.
    John Wiley, 1996. MR 1406797 (97m:65001)
  • 34. Jie Shen and Li-Lian Wang.
    Spectral approximation of the Helmholtz equation with high wave numbers.
    SIAM J. Numer. Anal., 43(2):623-644 (electronic), 2005. MR 2177883 (2006j:65375)
  • 35. Roger Temam.
    Infinite-dimensional dynamical systems in mechanics and physics, volume 68 of Applied Mathematical Sciences.
    Springer-Verlag, New York, 1988. MR 953967 (89m:58056)
  • 36. N. Toyama and K. Shogen.
    Computation of the value of the even and the odd Mathieu funcitons of order $ n$ for a given parameter $ s$ and an argument $ x$.
    IEEE Trans. Ant. and Propagat., 32(5):537-539, 1994. MR 748375 (85j:33006)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N35, 65N22, 65F05, 35J05

Retrieve articles in all journals with MSC (2000): 65N35, 65N22, 65F05, 35J05


Additional Information

Jie Shen
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email: shen@math.purdue.edu

Li-Lian Wang
Affiliation: Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 637616, Singapore
Email: lilian@ntu.edu.sg

DOI: https://doi.org/10.1090/S0025-5718-08-02197-2
Keywords: Mathieu functions, elliptic coordinates, approximation in Sobolev spaces, Helmholtz equations
Received by editor(s): March 4, 2008
Published electronically: November 20, 2008
Additional Notes: The work of the first author was partially supported by NSF Grant DMS-0610646.
The work of the second author was partially supported by a Start-Up grant from NTU, Singapore MOE Grant T207B2202, and Singapore NRF2007IDM-IDM002-010.
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society