Classification of ternary extremal self-dual codes of length 28
Authors:
Masaaki Harada, Akihiro Munemasa and Boris Venkov
Journal:
Math. Comp. 78 (2009), 1787-1796
MSC (2000):
Primary 94B05; Secondary 11H71
DOI:
https://doi.org/10.1090/S0025-5718-08-02194-7
Published electronically:
October 24, 2008
MathSciNet review:
2501075
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: All -dimensional unimodular lattices with minimum norm
are known. Using this classification, we give a classification of ternary extremal self-dual codes of length
. Up to equivalence, there are 6,931 such codes.
- 1.
R. Bacher and B. Venkov, Lattices and association schemes: a unimodular example without roots in dimension
, Ann. Inst. Fourier (Grenoble) 45 (1995), 1163-1176. MR 1370742 (96j:11093)
- 2. R. Bacher and B. Venkov, Réseaux entiers unimodulaires sans racines en dimensions 27 et 28, Réseaux euclidiens, designs sphériques et formes modulaires, 212-267, Monogr. Enseign. Math., 37, Enseignement Math., Geneva, 2001. MR 1878751 (2003a:11082)
- 3.
C. Bachoc, T.A. Gulliver and M. Harada, Isodual codes over
and isodual lattices, J. Algebraic Combin. 12 (2000), 223-240. MR 1803233 (2001j:94052)
- 4. W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, Available online at http://magma.maths.usyd.edu.au/magma/.
- 5.
J.H. Conway, V. Pless and N.J.A. Sloane, Self-dual codes over
and
of length not exceeding
, IEEE Trans. Inform. Theory 25 (1979), 312-322. MR 528009 (80h:94026)
- 6. J.H. Conway and N.J.A. Sloane, Sphere Packing, Lattices and Groups (3rd ed.), Springer-Verlag, New York, 1999. MR 1662447 (2000b:11077)
- 7.
U. Dempwolff, Translation planes of order
, Des. Codes Cryptogr. 4 (1994), 105-121. MR 1268564 (95a:51012)
- 8. M. Harada, New extremal ternary self-dual codes, Australas. J. Combin. 17 (1998), 133-145. MR 1626295 (99c:94043)
- 9.
M. Harada, An extremal ternary self-dual
code with a trivial automorphism group, Discrete Math. 239 (2001), 121-125. MR 1850990 (2002m:94058)
- 10.
M. Harada, M. Kitazume and M. Ozeki, Ternary code construction of unimodular lattices and self-dual codes over
, J. Algebraic Combin. 16 (2002), 209-223. MR 1943589 (2004b:11099)
- 11. M. Harada and A. Munemasa, Database of Self-Dual Codes, Available online at http://www.math.is.tohoku.ac.jp/~munemasa/ selfdualcodes.htm.
- 12. M. Harada, M. Ozeki and K. Tanabe, On the covering radius of ternary extremal self-dual codes, Des. Codes Cryptogr. 33 (2004), 149-158. MR 2080361 (2005d:94214)
- 13.
W.C. Huffman, On extremal self-dual ternary codes of lengths
to
, IEEE Trans. Inform. Theory 38 (1992), 1395-1400. MR 1168760 (93b:94030)
- 14. W.C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl. 11 (2005), 451-490. MR 2158773 (2006h:94253)
- 15.
D.L. Kreher, ``
-Designs,
,'' The CRC Handbook of Combinatorial Designs, C.J. Colbourn and J.H. Dinitz (Editors), CRC Press, Boca Raton, 1996, pp. 47-66. MR 1392993 (97a:05001)
- 16.
J.S. Leon, V. Pless and N.J.A. Sloane, On ternary self-dual codes of length
, IEEE Trans. Inform. Theory 27 (1981), 176-180. MR 633414 (83c:94020)
- 17.
C.L. Mallows, V. Pless and N.J.A. Sloane, Self-dual codes over
, SIAM J. Appl. Math. 31 (1976), 649-666. MR 0441541 (55:14404)
- 18. C.L. Mallows and N.J.A. Sloane, An upper bound for self-dual codes, Inform. Control 22 (1973), 188-200. MR 0414223 (54:2326)
- 19.
G. Nebe, Finite subgroups of
for
, Comm. Algebra 24 (1996), 2341-2397. MR 1390378 (97e:20066)
- 20. V. Pless, N.J.A. Sloane and H.N. Ward, Ternary codes of minimum weight 6 and the classification of length 20, IEEE Trans. Inform. Theory 26 (1980), 305-316. MR 570014 (81b:94033)
- 21. E. Rains and N.J.A. Sloane, ``Self-dual codes,'' Handbook of Coding Theory, V.S. Pless and W.C. Huffman (Editors), Elsevier, Amsterdam 1998, pp. 177-294. MR 1667939
Retrieve articles in Mathematics of Computation with MSC (2000): 94B05, 11H71
Retrieve articles in all journals with MSC (2000): 94B05, 11H71
Additional Information
Masaaki Harada
Affiliation:
Department of Mathematical Sciences, Yamagata University, Yamagata 990–8560, Japan
Akihiro Munemasa
Affiliation:
Graduate School of Information Sciences, Tohoku University, Sendai 980–8579, Japan
Boris Venkov
Affiliation:
Steklov Institute of Mathematics at St. Petersburg, St. Petersburg 191011, Russia
DOI:
https://doi.org/10.1090/S0025-5718-08-02194-7
Keywords:
Extremal self-dual code,
unimodular lattice,
frame.
Received by editor(s):
January 29, 2008
Received by editor(s) in revised form:
June 9, 2008
Published electronically:
October 24, 2008
Additional Notes:
The work of the first and second authors was partially supported by the Sumitomo Foundation (Grant for Basic Science Research Projects, 050034).
Article copyright:
© Copyright 2008
American Mathematical Society