Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Hybrid spline frames


Authors: Say Song Goh, Tim N. T. Goodman and S. L. Lee
Journal: Math. Comp. 78 (2009), 1537-1551
MSC (2000): Primary 65D07, 41A15; Secondary 42C40, 42C30
DOI: https://doi.org/10.1090/S0025-5718-09-02192-9
Published electronically: January 21, 2009
MathSciNet review: 2501062
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using their unitary extension principle, Ron and Shen have constructed a normalized tight frame for $ L^2(\mathbb{R})$ consisting of spline functions with uniform knots. This paper constructs a normalized tight frame for $ L^2((0,\infty))$ comprising spline functions with knots on a hybrid of uniform and geometric mesh. The construction is motivated by applications in adaptive approximation using spline functions on a hybrid mesh that admits a natural dyadic multiresolution approximation of $ L^2((0,\infty))$ based on dilation and translation.


References [Enhancements On Off] (What's this?)

  • 1. A. Basu, I. Cheng, Y. Pan, Foveated Online 3D Visualization, 16th International Conference on Pattern Recognition (ICPR$ '$02), Canada, Volume 3, pp. 30 - 44.
  • 2. M. Bolduc and M. D. Levine, A Real-time Foveated Sensor with Overlapping Receptive Fields, Real-Time Imaging, 3(1977), 195 - 212 .
  • 3. P. J. Burt, Smart sensing within a pyramid vision machine, Proc. IEEE, 76 (1988), 1006 - 1015.
  • 4. E. C. Chang, S. Mallat and C. Yap, Wavelet foveation, Appl. Comput. Harmon. Anal., 9 (2000), 312 - 335. MR 1793421 (2002g:94003)
  • 5. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhaüser, Boston, 2003. MR 1946982 (2003k:42001)
  • 6. C. K. Chui and W. He, Compactly supported tight frames associated with refinable functions, Appl. Comput. Harmon. Anal., 8 (2000), 293 - 319. MR 1754930 (2001h:42049)
  • 7. C. K. Chui, W. He and J. Stöckler, Compactly supported tight and sibling frames with maximum vanishing moments, Appl. Comput. Harmon. Anal., 13 (2002), 224 - 262. MR 1942743 (2004a:94011)
  • 8. C. K. Chui, W. He and J. Stöckler, Nonstationary tight wavelet frames, I: bounded intervals, Appl. Comput. Harmon. Anal., 17 (2004), 141 - 197. MR 2082157 (2005f:42082)
  • 9. C. K. Chui, W. He and J. Stöckler, Nonstationary tight wavelet frames, II: unbounded intervals, Appl. Comput. Harmon. Anal., 18 (2005), 25 - 66. MR 2110512 (2005j:42026)
  • 10. C. K. Chui and J. Z. Wang, On compactly supported spline wavelets and a duality principle, Trans. Amer. Math. Soc., 330 (1992), 903 - 915. MR 1076613 (92f:41020)
  • 11. I. Daubechies, B. Han, A. Ron and Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal., 14 (2003), 1 - 46. MR 1971300 (2004a:42046)
  • 12. X. Gao, T. N. T. Goodman and S. L. Lee, Foveated splines and wavelets, Appl. Comput. Harmon. Anal. (to appear)
  • 13. K. Jetter and D.-X. Zhou, Order of linear approximation from shift-invariant spaces, Constr. Approx., 11 (1995), 423 - 438. MR 1367171 (96i:41024)
  • 14. A. Khodakovsky, P. Schröder, W. Sweldens, Progressive geometry compression, in: Proc. ACM SIGGRAPH, 2000, pp. 271-278.
  • 15. Y. Kuniyoshi, K. Nobuyuki, S. Rougeaux, T, Suehiro, Active Stereo Vision System with Foveated Wide Angle Lens, Proceedings of 2nd Asian Conference on Computer Vision, Singapore, 1995, pp. 191 - 200.
  • 16. M. Lounsbery, T.D. DeRose, J. Warren, Multiresolution analysis for surfaces of arbitrary topology type, ACM Trans. Graphics 16 (1997), 34-73.
  • 17. S. Mallat, Foveal detection and approximation for singularities, Appl. Comput. Harmon. Anal., 14 (2003), 133 - 180. MR 1981205 (2004c:42072)
  • 18. C. A. Micchelli, Cardinal $ \mathcal{L}$-splines, in Studies in Spline Functions and Approximation Theory, Academic Press, New York, 1976, pp. 203 - 250. MR 0481767 (58:1866)
  • 19. A. Ron and Z. Shen, Affine systems in $ L_2({\mathbb{R}}^d)$: the analysis of the analysis operator, J. Funct. Anal., 148 (1997), 408 - 447. MR 1469348 (99g:42043)
  • 20. I. J. Schoenberg, Cardinal interpolation and spline functions, J. Approx. Theory, 2 (1969), 167 - 206. MR 0257616 (41:2266)
  • 21. I. J. Schoenberg, Cardinal Spline Interpolation, CBMS-NSF Regional Conference Series in Applied Mathematics 12, SIAM, 1973. MR 0420078 (54:8095)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65D07, 41A15, 42C40, 42C30

Retrieve articles in all journals with MSC (2000): 65D07, 41A15, 42C40, 42C30


Additional Information

Say Song Goh
Affiliation: Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
Email: matgohss@nus.edu.sg

Tim N. T. Goodman
Affiliation: Department of Mathematics, The University of Dundee, Dundee DD1 4HN, Scotland, United Kingdom
Email: tgoodman@maths.dundee.ac.uk

S. L. Lee
Affiliation: Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
Email: matleesl@nus.edu.sg

DOI: https://doi.org/10.1090/S0025-5718-09-02192-9
Keywords: Uniform splines, geometric splines, hybrid splines, multiresolution, tight frames
Received by editor(s): September 26, 2006
Received by editor(s) in revised form: March 15, 2008
Published electronically: January 21, 2009
Additional Notes: This research was partially supported by the Wavelets and Information Processing Programme of the Centre for Wavelets, Approximation and Information Processing, National University of Singapore, under a grant from DSTA
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society