Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



The lifting of polynomial traces revisited

Authors: Christine Bernardi, Monique Dauge and Yvon Maday
Journal: Math. Comp. 79 (2010), 47-69
MSC (2000): Primary 26D05, 42C05, 65N35, 46G15
Published electronically: July 24, 2009
MathSciNet review: 2552217
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a lifting operator of polynomial traces on an interval that is stable in appropriate Sobolev norms. Next we extend this result to the case of traces vanishing at the endpoints of the interval. This has two applications, the interpolation of polynomial spaces and the evaluation by discrete formulas of fractional order Sobolev norms on polynomials.

Nous construisons un opérateur de relèvement de traces polynômiales sur un intervalle qui est stable par rapport à des normes de Sobolev appropriées. Puis nous étendons ce résultat au cas de traces nulles aux extrémités de l'intervalle. Ceci a deux applications: l'interpolation d'espaces de polynômes, l'évaluation par des formules discrètes de normes de Sobolev d'ordre non entier appliquées à des polynômes.

References [Enhancements On Off] (What's this?)

  • 1. Y. Achdou, Y. Maday, O.B. Widlund, Iterative substructuring preconditioners for mortar element methods in two dimensions, SIAM J. Numer. Anal. 36 (1999), 551-580. MR 1675257 (99m:65233)
  • 2. R.A. Adams, Sobolev Spaces, Academic Press (1975). MR 0450957 (56:9247)
  • 3. M. Ainsworth, L. Demkowicz, Explicit polynomial preserving trace liftings on a triangle, Math. Nachr. 282 (2009), 640-658.
  • 4. I. Babuška, M. Suri, The $ h$-$ p$ version of the finite element method with quasi-uniform meshes, Modél. Math. et Anal. Numér. 21 (1987), 199-238. MR 896241 (88d:65154)
  • 5. F. Ben Belgacem, Polynomial extensions of compatible polynomial traces in three dimensions, Comput. Methods Appl. Mech. Engrg. 116 (1994), 235-241. MR 1286532 (95c:65019)
  • 6. C. Bernardi, T. Chacón Rebollo, E. Chacón Vera, D. Franco Coronil, A posteriori error analysis for two non-overlapping domain decomposition techniques, Appl. Num. Math. 59 (2009), 1214-1236.
  • 7. C. Bernardi, M. Dauge, Y. Maday, Relèvements de traces préservant les polynômes, C. R. Acad. Sci. Paris 315 Série I (1992), 333-338. MR 1179731 (93g:65036)
  • 8. C. Bernardi, M. Dauge, Y. Maday, Polynomials in Sobolev Spaces and Application to the Mortar Spectral Element Method, in preparation.
  • 9. C. Bernardi, Y. Maday, Relèvement polynômial de traces et applications, Modél. Math. et Anal. Numér. 24 (1990), 557-611. MR 1076961 (91k:65040)
  • 10. C. Bernardi, Y. Maday, Approximations spectrales de problèmes aux limites elliptiques, Mathématiques & Applications 10, Springer-Verlag (1992). MR 1208043 (94f:65112)
  • 11. C. Canuto, D. Funaro, The Schwarz algorithm for spectral methods, SIAM J. Numer. Anal. 25 (1988), 24-40. MR 923923 (89b:65286)
  • 12. M. Costabel, M. Dauge, L. Demkowicz, Polynomial extension operators for $ H^1$, $ {\boldsymbol H}({\bf curl})$ and $ {\boldsymbol H}({\rm div})$-spaces on a cube, Math. Comput. 77 (2008), 1967-1999. MR 2429871
  • 13. B.Q. Guo, The $ h$-$ p$ version of the finite element method for elliptic equations of order $ 2m$, Numer. Math. 53 (1988), 199-224. MR 946376 (89j:65072)
  • 14. J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Dunod (1968). MR 0247243 (40:512)
  • 15. Y. Maday, Relèvement de traces polynômiales et interpolations hilbertiennes entre espaces de polynômes, C.R. Acad. Sci. Paris, Sér. 1 309 (1989), 463-468. MR 1055459 (91f:46046)
  • 16. R. Muñoz-Sola, Polynomial liftings on a tetrahedron and application to the $ h$-$ p$ version of the finite element method in three dimensions, SIAM J. Numer. Anal. 34 (1997), 282-314. MR 1445738 (98k:65069)
  • 17. L.F. Pavarino, O.B. Widlund, A polylogarithmic bound for an iterative substructuring method for spectral elements in three dimensions, SIAM J. Numer. Anal. 33 (1996), 1303-1335. MR 1403547 (97h:65151)
  • 18. A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Numerical Mathematics and Scientific Computation, Oxford University Press (1999). MR 1857663 (2002i:65002)
  • 19. A. Toselli, O. Widlund, Domain Decomposition Methods - Algorithms and Theory, Springer Series in Computational Mathematics 34, Springer-Verlag (2005). MR 2104179 (2005g:65006)
  • 20. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland (1978). MR 503903 (80i:46032b)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 26D05, 42C05, 65N35, 46G15

Retrieve articles in all journals with MSC (2000): 26D05, 42C05, 65N35, 46G15

Additional Information

Christine Bernardi
Affiliation: Laboratoire Jacques-Louis Lions, C.N.R.S. & Université Pierre et Marie Curie, Boîte courrier 187, 4 place Jussieu, 75252 Paris Cedex 05, France

Monique Dauge
Affiliation: IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France

Yvon Maday
Affiliation: UPMC University Paris 06, UMR7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

Received by editor(s): January 29, 2008
Received by editor(s) in revised form: October 11, 2008
Published electronically: July 24, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society