Convergence analysis of the Jacobi spectralcollocation methods for Volterra integral equations with a weakly singular kernel
Authors:
Yanping Chen and Tao Tang
Journal:
Math. Comp. 79 (2010), 147167
MSC (2000):
Primary 35Q99, 35R35, 65M12, 65M70
Published electronically:
June 16, 2009
MathSciNet review:
2552221
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper, a Jacobicollocation spectral method is developed for Volterra integral equations of the second kind with a weakly singular kernel. We use some function transformations and variable transformations to change the equation into a new Volterra integral equation defined on the standard interval , so that the solution of the new equation possesses better regularity and the Jacobi orthogonal polynomial theory can be applied conveniently. In order to obtain highorder accuracy for the approximation, the integral term in the resulting equation is approximated by using Jacobi spectral quadrature rules. The convergence analysis of this novel method is based on the Lebesgue constants corresponding to the Lagrange interpolation polynomials, polynomial approximation theory for orthogonal polynomials and operator theory. The spectral rate of convergence for the proposed method is established in the norm and the weighted norm. Numerical results are presented to demonstrate the effectiveness of the proposed method.
 1.
S. BOCHKANOV AND V. BYSTRITSKY, Computation of GaussJacobi quadrature rule nodes and weights, http://www.alglib.net/integral/gq/gjacobi.php
 2.
Hermann
Brunner, Nonpolynomial spline collocation for Volterra equations
with weakly singular kernels, SIAM J. Numer. Anal. 20
(1983), no. 6, 1106–1119. MR 723827
(85d:65069), 10.1137/0720080
 3.
Hermann
Brunner, The numerical solution of weakly
singular Volterra integral equations by collocation on graded
meshes, Math. Comp. 45
(1985), no. 172, 417–437. MR 804933
(87b:65223), 10.1090/S00255718198508049333
 4.
Hermann
Brunner, Polynomial spline collocation methods for Volterra
integrodifferential equations with weakly singular kernels, IMA J.
Numer. Anal. 6 (1986), no. 2, 221–239. MR 967664
(89h:65217), 10.1093/imanum/6.2.221
 5.
Hermann
Brunner, Collocation methods for Volterra integral and related
functional differential equations, Cambridge Monographs on Applied and
Computational Mathematics, vol. 15, Cambridge University Press,
Cambridge, 2004. MR 2128285
(2005k:65002)
 6.
C.
Canuto, M.
Y. Hussaini, A.
Quarteroni, and T.
A. Zang, Spectral methods, Scientific Computation,
SpringerVerlag, Berlin, 2006. Fundamentals in single domains. MR 2223552
(2007c:65001)
 7.
Y. CHEN AND T. TANG, Convergence analysis for the Chebyshev collocation methods to Volterra integral equations with a weakly singular kernel, submitted to SIAM J. Numer. Anal.
 8.
David
Colton and Rainer
Kress, Inverse acoustic and electromagnetic scattering theory,
2nd ed., Applied Mathematical Sciences, vol. 93, SpringerVerlag,
Berlin, 1998. MR
1635980 (99c:35181)
 9.
Teresa
Diogo, Sean
McKee, and T.
Tang, Collocation methods for secondkind Volterra integral
equations with weakly singular kernels, Proc. Roy. Soc. Edinburgh
Sect. A 124 (1994), no. 2, 199–210. MR 1273745
(95c:45011), 10.1017/S0308210500028432
 10.
A.
Gogatishvili and J.
Lang, The generalized Hardy operator with kernel and variable
integral limits in Banach function spaces, J. Inequal. Appl.
4 (1999), no. 1, 1–16. MR 1733113
(2001f:47085), 10.1155/S1025583499000272
 11.
I.
G. Graham and I.
H. Sloan, Fully discrete spectral boundary integral methods for
Helmholtz problems on smooth closed surfaces in ℝ³, Numer.
Math. 92 (2002), no. 2, 289–323. MR 1922922
(2003h:65179), 10.1007/s002110100343
 12.
BenYu
Guo, Jie
Shen, and LiLian
Wang, Optimal spectralGalerkin methods using generalized Jacobi
polynomials, J. Sci. Comput. 27 (2006), no. 13,
305–322. MR 2285783
(2008f:65233), 10.1007/s1091500590557
 13.
Guo
Benyu and Wang
Lilian, Jacobi interpolation approximations and their applications
to singular differential equations, Adv. Comput. Math.
14 (2001), no. 3, 227–276. MR 1845244
(2002f:41003), 10.1023/A:1016681018268
 14.
Benyu
Guo and Lilian
Wang, Jacobi approximations in nonuniformly Jacobiweighted
Sobolev spaces, J. Approx. Theory 128 (2004),
no. 1, 1–41. MR 2063010
(2005h:41010), 10.1016/j.jat.2004.03.008
 15.
Qiya
Hu, Stieltjes derivatives and 𝛽polynomial spline
collocation for Volterra integrodifferential equations with
singularities, SIAM J. Numer. Anal. 33 (1996),
no. 1, 208–220. MR 1377251
(97a:65112), 10.1137/0733012
 16.
Alois
Kufner and LarsErik
Persson, Weighted inequalities of Hardy type, World Scientific
Publishing Co., Inc., River Edge, NJ, 2003. MR 1982932
(2004c:42034)
 17.
Ch.
Lubich, Fractional linear multistep methods
for AbelVolterra integral equations of the second kind, Math. Comp. 45 (1985), no. 172, 463–469. MR 804935
(86j:65181), 10.1090/S00255718198508049357
 18.
G.
Mastroianni and D.
Occorsio, Optimal systems of nodes for Lagrange interpolation on
bounded intervals. A survey, J. Comput. Appl. Math.
134 (2001), no. 12, 325–341. MR 1852573
(2002e:65020), 10.1016/S03770427(00)005574
 19.
Paul
Nevai, Mean convergence of Lagrange
interpolation. III, Trans. Amer. Math. Soc.
282 (1984), no. 2,
669–698. MR
732113 (85c:41009), 10.1090/S00029947198407321134
 20.
C.
K. Qu and R.
Wong, Szegő’s conjecture on Lebesgue constants for
Legendre series, Pacific J. Math. 135 (1988),
no. 1, 157–188. MR 965689
(89m:42025)
 21.
David
L. Ragozin, Polynomial approximation on compact
manifolds and homogeneous spaces, Trans. Amer.
Math. Soc. 150
(1970), 41–53. MR 0410210
(53 #13960), 10.1090/S00029947197004102100
 22.
David
L. Ragozin, Constructive polynomial approximation
on spheres and projective spaces., Trans. Amer.
Math. Soc. 162
(1971), 157–170. MR 0288468
(44 #5666), 10.1090/S00029947197102884681
 23.
Herman
J. J. te Riele, Collocation methods for weakly singular secondkind
Volterra integral equations with nonsmooth solution, IMA J. Numer.
Anal. 2 (1982), no. 4, 437–449. MR 692290
(84g:65167), 10.1093/imanum/2.4.437
 24.
Stefan
G. Samko and Rogério
P. Cardoso, Sonine integral equations of the first kind in
𝐿_{𝑝}(0,𝑏), Fract. Calc. Appl. Anal.
6 (2003), no. 3, 235–258. MR 2035650
(2005a:45003)
 25.
J. SHEN AND T. TANG, Spectral and HighOrder Methods with Applications, Science Press, Beijing, 2006.
 26.
T.
Tang, Superconvergence of numerical solutions to weakly singular
Volterra integrodifferential equations, Numer. Math.
61 (1992), no. 3, 373–382. MR 1151776
(92k:65198), 10.1007/BF01385515
 27.
T.
Tang, A note on collocation methods for Volterra
integrodifferential equations with weakly singular kernels, IMA J.
Numer. Anal. 13 (1993), no. 1, 93–99. MR 1199031
(93k:65111), 10.1093/imanum/13.1.93
 28.
Tao
Tang, Xiang
Xu, and Jin
Cheng, On spectral methods for Volterra integral equations and the
convergence analysis, J. Comput. Math. 26 (2008),
no. 6, 825–837. MR 2464738
(2010c:65256)
 29.
T. TANG AND X. XU, Accuracy enhancement using spectral postprocessing for differential equations and integral equations, Commun. Comput. Phys., 5 (2009), pp. 779792.
 30.
Zhengsu
Wan, Benyu
Guo, and Zhongqing
Wang, Jacobi pseudospectral method for fourth order problems,
J. Comput. Math. 24 (2006), no. 4, 481–500. MR 2243117
(2007c:65063)
 31.
D.
Willett, A linear generalization of
Gronwall’s inequality, Proc. Amer. Math.
Soc. 16 (1965),
774–778. MR 0181726
(31 #5953), 10.1090/S00029939196501817263
 1.
 S. BOCHKANOV AND V. BYSTRITSKY, Computation of GaussJacobi quadrature rule nodes and weights, http://www.alglib.net/integral/gq/gjacobi.php
 2.
 H. BRUNNER, Nonpolynomial spline collocation for Volterra equations with weakly singular kernels, SIAM J . Numer. Anal., 20 (1983), pp. 11061119. MR 723827 (85d:65069)
 3.
 H. BRUNNER, The numerical solutions of weakly singular Volterra integral equations by collocation on graded meshes, Math. Comp., 45 (1985), pp. 417437. MR 804933 (87b:65223)
 4.
 H. BRUNNER, Polynomial spline collocation methods for Volterra integrodifferential equations with weakly singular kernels, IMA J . Numer. Anal., 6 (1986), pp. 221239. MR 967664 (89h:65217)
 5.
 H. BRUNNER, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, 2004. MR 2128285 (2005k:65002)
 6.
 C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI AND T. A. ZANG, Spectral Methods. Fundamentals in Single Domains, SpringerVerlag, Berlin, 2006. MR 2223552 (2007c:65001)
 7.
 Y. CHEN AND T. TANG, Convergence analysis for the Chebyshev collocation methods to Volterra integral equations with a weakly singular kernel, submitted to SIAM J. Numer. Anal.
 8.
 D. COLTON AND R. KRESS, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences 93, SpringerVerlag, Heidelberg, 2nd Edition (1998). MR 1635980 (99c:35181)
 9.
 T. DIOGO, S. MCKEE, AND T. TANG, Collocation methods for secondkind Volterra integral equations with weakly singular kernels, Proceedings of The Royal Society of Edinburgh, 124A, 1994, pp. 199210. MR 1273745 (95c:45011)
 10.
 A. GOGATISHVILI AND J. LANG, The generalized Hardy operator with kernel and variable integral limits in Banach function spaces, Journal of Inequalities and Applications, 4 (1999), Issue 1, pp. 116. MR 1733113 (2001f:47085)
 11.
 I. G. GRAHAM AND I. H. SLOAN, Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in , Numerische Mathematik, 92 (2002), pp. 289323. MR 1922922 (2003h:65179)
 12.
 B. GUO, J. SHEN AND L. WANG, Optimal spectralGalerkin methods using generalized Jacobi polynomials, J. Sci. Comput. 27 (2006), 305322. MR 2285783 (2008f:65233)
 13.
 B. GUO AND L. WANG, Jacobi interpolation approximations and their applications to singular differential equations, Adv. Comput. Math. 14 (2001), pp. 227276. MR 1845244 (2002f:41003)
 14.
 B. GUO AND L. WANG, Jacobi approximations in nonuniformly Jacobiweighted Sobolev spaces, J. Approx. Theory, 128 (2004), pp. 141. MR 2063010 (2005h:41010)
 15.
 Q. Hu, Stieltjes derivatives and polynomial spline collocation for Volterra integrodifferential equations with singularities. SIAM J. Numer. Anal., 33 (1996), 208220. MR 1377251 (97a:65112)
 16.
 A. Kufner and L.E. Persson, Weighted Inequalities of Hardy Type, World Scientific, River Edge, NJ, 2003. MR 1982932 (2004c:42034)
 17.
 Ch. Lubich, Fractional linear multistep methods for AbelVolterra integral equations of the second kind, Math. Comp., 45 (1985), pp. 463469. MR 804935 (86j:65181)
 18.
 G. MASTROIANNI AND D. OCCORSIO, Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey, Journal of Computational and Applied Mathematics, 134 (2001), pp. 325341. MR 1852573 (2002e:65020)
 19.
 P. NEVAI, Mean convergence of Lagrange interpolation. III, Trans. Amer. Math. Soc., 282 (1984), 669698. MR 85c:41009
 20.
 C. K. QU AND R. WONG, Szegö's Conjecture on Lebesgue Constants for Legendre Series, Pacific J. Math., 135 (1988), pp. 157188. MR 965689 (89m:42025)
 21.
 D. L. RAGOZIN, Polynomial approximation on compact manifolds and homogeneous spaces, Trans. Amer. Math. Soc., 150 (1970), pp. 4153. MR 0410210 (53:13960)
 22.
 D. L. RAGOZIN, Constructive polynomial approximation on spheres and projective spaces, Trans. Amer. Math. Soc., 162 (1971), pp. 157170. MR 0288468 (44:5666)
 23.
 H. J.J. TE RIELE, Collocation methods for weakly singular secondkind Volterra integral equations with nonsmooth solution, IMA J. Numer. Anal., 2 (1982), pp. 437449. MR 692290 (84g:65167)
 24.
 S. G. SAMKO AND R. P. CARDOSO, Sonine integral equations of the first kind in , Fract. Calc. & Appl. Anal. 2003, vol. 6, No 3, 235258. MR 2035650 (2005a:45003)
 25.
 J. SHEN AND T. TANG, Spectral and HighOrder Methods with Applications, Science Press, Beijing, 2006.
 26.
 T. TANG, Superconvergence of numerical solutions to weakly singular Volterra integrodifferential equations, Numer. Math., 61 (1992), pp. 373382. MR 1151776 (92k:65198)
 27.
 T. TANG, A note on collocation methods for Volterra integrodifferential equations with weakly singular kernels, IMA J. Numer. Anal., 13 (1993), pp. 9399. MR 1199031 (93k:65111)
 28.
 T. TANG, X. XU, AND J. CHENG, On spectral methods for Volterra integral equations and the convergence analysis, J. Comput. Math., 26 (2008), pp. 825837. MR 2464738
 29.
 T. TANG AND X. XU, Accuracy enhancement using spectral postprocessing for differential equations and integral equations, Commun. Comput. Phys., 5 (2009), pp. 779792.
 30.
 Z.S. WAN, B.Y. GUO AND Z.Q. WANG, Jacobi pseudospectral method for fourth order problems, J. Comp. Math., 24 (2006), pp. 481500. MR 2243117 (2007c:65063)
 31.
 D. WILLETT, A linear generalization of Gronwall's inequality, Proceedings of the American Mathematical Society, Vol. 16, No. 4. (Aug., 1965), pp. 774778. MR 0181726 (31:5953)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2000):
35Q99,
35R35,
65M12,
65M70
Retrieve articles in all journals
with MSC (2000):
35Q99,
35R35,
65M12,
65M70
Additional Information
Yanping Chen
Affiliation:
School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
Email:
yanpingchen@scnu.edu.cn
Tao Tang
Affiliation:
Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong –and– Faculty of Science, Beijing University of Aeronautics and Astronautics, Beijing, China
Email:
ttang@math.hkbu.edu.hk
DOI:
http://dx.doi.org/10.1090/S0025571809022698
Received by editor(s):
March 24, 2008
Received by editor(s) in revised form:
February 14, 2009
Published electronically:
June 16, 2009
Additional Notes:
The first author is supported by Guangdong Provincial “Zhujiang Scholar Award Project”, National Science Foundation of China 10671163, the National Basic Research Program under the Grant 2005CB321703
The second author is supported by Hong Kong Research Grant Council, Natural Science Foundation of China (G10729101), and Ministry of Education of China through a Changjiang Scholar Program.
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
