Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Spectral approximation of pattern-forming nonlinear evolution equations with double-well potentials of quadratic growth


Authors: Nicolas Condette, Christof Melcher and Endre Süli
Journal: Math. Comp. 80 (2011), 205-223
MSC (2010): Primary 65M70; Secondary 82D40, 82D60
DOI: https://doi.org/10.1090/S0025-5718-10-02365-3
Published electronically: May 5, 2010
MathSciNet review: 2728977
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the analysis of a numerical algorithm for the approximate solution of a class of nonlinear evolution problems that arise as $ \textrm{L}^2$ gradient flow for the Modica-Mortola regularization of the functional

$\displaystyle v \in \textrm{BV}(\mathbb{T}^d; \{-1,1\}) \mapsto E(v) := \frac{... ...\vert + \frac{1}{2}\sum_{k \in \mathbb{Z}^d} \sigma(k) \vert\hat{v}(k)\vert^2.$

Here $ \gamma$ is the interfacial energy per unit length or unit area, $ \mathbb{T}^d$ is the flat torus in $ \mathbb{R}^d$, and $ \sigma$ is a nonnegative Fourier multiplier, that is continuous on $ \mathbb{R}^d$, symmetric in the sense that $ \sigma(\xi)=\sigma(-\xi)$ for all $ \xi \in \mathbb{R}^d$ and that decays to zero at infinity.

Such functionals feature in mathematical models of pattern-formation in micromagnetics and models of diblock copolymers. The resulting evolution equation is discretized by a Fourier spectral method with respect to the spatial variables and a modified Crank-Nicolson scheme in time. Optimal-order a priori bounds are derived on the global error in the $ \ell^\infty(0,T;\mathrm{L}^2(\mathbb{T}^d))$ norm.


References [Enhancements On Off] (What's this?)

  • 1. G. Alberti, Variational models for phase transitions, an approach via $ \Gamma$-convergence, Calculus of variations and partial differential equations (Pisa, 1996), Springer, Berlin, 2000, pp. 95-114. MR 1757697
  • 2. A. Braides, $ \Gamma$-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications, vol. 22, Oxford University Press, Oxford, 2002. MR 1968440 (2004e:49001)
  • 3. C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp. 38 (1982), no. 157, 67-86. MR 637287 (82m:41003)
  • 4. R. Choksi, Scaling laws in microphase separation of diblock copolymers, J. Nonlinear Sci. 11 (2001), no. 3, 223-236. MR 1852942 (2003h:82091)
  • 5. G. Dal Maso, An introduction to $ \Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1201152 (94a:49001)
  • 6. Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition, SIAM J. Numer. Anal. 28 (1991), no. 5, 1310-1322. MR 1119272 (92h:65166)
  • 7. G.A. Gehring and B. Kaplan, The domain structure in ultrathin magnetic films, J. Magn. Mat. 128 (1993), 111-116.
  • 8. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981. MR 610244 (83j:35084)
  • 9. A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures, Springer-Verlag, Berlin-Heidelberg-New York, 1998.
  • 10. C. Kooy and U. Enz, Experimental and theoretical study of the domain configuration on thin layers of $ BaFe_{12}O_{19}$, Philips Res. Rep. 15 (1960), 7-29.
  • 11. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics, part 2, Course of Theoretical Physics, vol. 9, Pergamon Press, Oxford-New York, 1980.
  • 12. M. E. Taylor, Partial Differential Equations III, Applied Mathematical Sciences, vol. 117, Springer-Verlag, New York, 1997. MR 1477408 (98k:35001)
  • 13. X. Ye, The Fourier collocation method for the Cahn-Hilliard equation, Comput. Math. Appl. 44 (2002), no. 1-2, 213-229. MR 1908282 (2003e:65185)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M70, 82D40, 82D60

Retrieve articles in all journals with MSC (2010): 65M70, 82D40, 82D60


Additional Information

Nicolas Condette
Affiliation: Department of Mathematics, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
Email: condette@mathematik.hu-berlin.de

Christof Melcher
Affiliation: Department of Mathematics I, RWTH Aachen University, D-52056 Aachen, Germany
Email: melcher@math1.rwth-aachen.de

Endre Süli
Affiliation: Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford OX1 3LB, United Kingdom.
Email: endre.suli@maths.ox.ac.uk

DOI: https://doi.org/10.1090/S0025-5718-10-02365-3
Received by editor(s): April 23, 2009
Received by editor(s) in revised form: September 23, 2009
Published electronically: May 5, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society