Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Efficient and reliable hierarchical error estimates for the discretization error of elliptic obstacle problems


Authors: Ralf Kornhuber and Qingsong Zou
Journal: Math. Comp. 80 (2011), 69-88
MSC (2010): Primary 65N15, 65N30
DOI: https://doi.org/10.1090/S0025-5718-2010-02394-4
Published electronically: June 23, 2010
MathSciNet review: 2728972
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present and analyze novel hierarchical a posteriori error estimates for self-adjoint elliptic obstacle problems. Our approach differs from straightforward, but nonreliable estimators by an additional extra term accounting for the deviation of the discrete free boundary in the localization step. We prove efficiency and reliability on a saturation assumption and a regularity condition on the underlying grid. Heuristic arguments suggest that the extra term is of higher order and preserves full locality. Numerical computations confirm our theoretical findings.


References [Enhancements On Off] (What's this?)

  • 1. M. Ainsworth and J.T. Oden.
    A Posteriori Error Estimation in Finite Element Analysis.
    John Wiley, New York, 2000. MR 1885308 (2003b:65001)
  • 2. R.E. Bank and A. Weiser.
    Some a posteriori error estimators for elliptic partial differential equations.
    Math. Comp., 44:283-301, 1985. MR 777265 (86g:65207)
  • 3. S. Bartels and C. Carstensen.
    Averaging techniques yield reliable a posteriori finite element error control for obstacle problems.
    Numer. Math., 99(2):225-249, 2004. MR 2107431 (2005m:35067)
  • 4. F.A. Bornemann, B. Erdmann, and R. Kornhuber.
    A posteriori error estimates for elliptic problems in two and three space dimensions.
    SIAM J. Numer. Anal., 33:1188-1204, 1996. MR 1393909 (98a:65161)
  • 5. D. Braess, R.H.W. Hoppe, and J. Schöberl.
    A posteriori estimators for obstacle problems by the hypercircle method.
    Comp. Visual. Sci., 11:351-362, 2008. MR 2425501 (2009d:49010)
  • 6. F. Brezzi, W.W. Hager, and P.A. Raviart.
    Error estimates for the finite element solution of variational inequalities I.
    Numer. Math., 28:431-443, 1977. MR 0448949 (56:7254)
  • 7. Z. Chen and R.H. Nochetto.
    Residual type a posteriori error estimates for elliptic obstacle problems.
    Numer. Math., 84:527-548, 2000. MR 1742264 (2001c:65134)
  • 8. P.G. Ciarlet.
    The Finite Element Method for Elliptic Problems.
    North-Holland, Amsterdam, 1980. MR 608971 (82c:65068)
  • 9. B. Delaunay.
    Sur la sphère vide.
    Bull. Acad. Sci. URSS, 7:793-800, 1934.
  • 10. P. Deuflhard, P. Leinen, and H. Yserentant.
    Concepts of an adaptive hierarchical finite element code.
    IMPACT Comput. Sci. Engrg., 1:3-35, 1989.
  • 11. W. Dörfler.
    A convergent adaptive algorithm for Poisson's equation.
    SIAM J. Numer.Anal., 33:1106-1124, 1996. MR 1393904 (97e:65139)
  • 12. W. Dörfler and R.H. Nochetto.
    Small data oscillation implies the saturation assumption.
    Numer. Math., 91:1-12, 2002. MR 1896084 (2003e:65195)
  • 13. C. Gräser, R. Kornhuber, and U. Sack.
    On hierarchical error estimators for time-discretized phase field models.
    To appear in the Proceedings of ENUMATH 2009.
  • 14. R.H.W. Hoppe and R. Kornhuber.
    Adaptive multilevel methods for obstacle problems.
    SIAM J. Numer. Anal., 31(2):301-323, 1994. MR 1276702 (95c:65181)
  • 15. D. Kinderlehrer and G. Stampacchia.
    An Introduction to Variational Inequalities and Their Applications.
    Academic Press, New York, 1980. MR 567696 (81g:49013)
  • 16. R. Kornhuber.
    A posteriori error estimates for elliptic variational inequalities.
    Computers Math. Applic., 31:49-60, 1996. MR 1385549 (97a:65091)
  • 17. R. Kornhuber.
    Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems.
    Teubner, Stuttgart, 1997. MR 1469497 (98e:65054)
  • 18. S. Korotov and M. Křížek.
    Global and local refinement techniques yielding nonobtuse tetrahedral partitions.
    Comput. Math. Applic., 50:1105-1113, 2005. MR 2167747 (2006k:65330)
  • 19. S. Korotov, M. Křížek, and P. Neittaanmäki.
    Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle.
    Math. Comp., 70:107-119, 2000. MR 1803125 (2001i:65126)
  • 20. W. Liu and N. Yan.
    A posteriori error estimators for a class of variational inequalities.
    J. Sci. Comput., 15:361-393, 2000. MR 1828748 (2002f:65165)
  • 21. R.H. Nochetto, K.G. Siebert, and A. Veeser.
    Pointwise a posteriori error control for elliptic obstacle problems.
    Numer. Math., 95:631-658, 2003. MR 1993943 (2004g:49055)
  • 22. R.H. Nochetto, K.G. Siebert, and A. Veeser.
    Fully localized a posteriori error estimators and barrier sets for contact problems.
    SIAM J. Numer. Anal., 42:2118-2135, 2005. MR 2139239 (2006g:65179)
  • 23. O. Sander.
    Multi-dimensional Coupling in a Human Knee Model.
    Ph.D. thesis, FU Berlin, 2008.
  • 24. K.G. Siebert and A. Veeser.
    A unilaterally constrained quadratic minimization with adaptive finite elements.
    SIAM J. Optim., 18:260-289, 2007. MR 2299684 (2008c:65347)
  • 25. A. Veeser.
    Efficient and reliable a posteriori error estimators for elliptic obstacle problems.
    SIAM J. Numer. Anal., 39:146-167, 2001. MR 1860720 (2002g:65150)
  • 26. R. Verfürth.
    A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques.
    Wiley and Teubner, 1996.
  • 27. J. Xu.
    Theory of multilevel methods.
    Technical Report AM 48, Pennsylvania State University, Department of Mathematics, University Park, USA, 1989.
  • 28. J. Xu.
    Iterative methods by space decomposition and subspace correction.
    SIAM Review, 34:581-613, 1992. MR 1193013 (93k:65029)
  • 29. J. Xu and L. Zikatanov.
    A monotone finite element scheme for convection diffusion equations.
    Math. Comp., 68:1429-1446, 1999. MR 1654022 (99m:65225)
  • 30. H. Yserentant.
    On the multilevel splitting of finite element spaces.
    Numer. Math., 49:379-412, 1986. MR 853662 (88d:65068a)
  • 31. H. Yserentant.
    Two preconditioners based on the multilevel splitting of finite element spaces.
    Numer. Math., 58:163-184, 1990. MR 1069277 (91j:65076)
  • 32. O.C. Zienkiewicz, J.P. de S.R. Gago, and D.W. Kelly.
    The hierarchical concept in finite element analysis.
    Computers & Structures, 16:53-65, 1983.
  • 33. Q. Zou, A. Veeser, R. Kornhuber, and C. Gräser.
    Hierarchical error estimates for the energy functional in obstacle problems.
    Technical Report 575, Matheon, 2009.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N15, 65N30

Retrieve articles in all journals with MSC (2010): 65N15, 65N30


Additional Information

Ralf Kornhuber
Affiliation: Freie Universität Berlin, Institut für Mathematik, Arnimallee 6, D-14195 Berlin, Germany
Email: kornhuber@math.fu-berlin.de

Qingsong Zou
Affiliation: University Guangzhou, Department of Scientific Computation and Computer Applications, Guangzhou, 510275, People’s Republic of China
Email: mcszqs@mail.sysu.edu.cn

DOI: https://doi.org/10.1090/S0025-5718-2010-02394-4
Received by editor(s): September 17, 2008
Received by editor(s) in revised form: June 22, 2009
Published electronically: June 23, 2010
Additional Notes: The authors gratefully acknowledge substantial support by Carsten Gräser and Oliver Sander through fruitful discussions and numerical assistance. The second author is supported in part by NSFC under the grant 10601070 and in part by Alexander von Humboldt Foundation hosted by Freie Universität in Berlin.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society