Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

How well does the Hermite-Padé approximation smooth the Gibbs phenomenon?


Authors: Bernhard Beckermann, Valeriy Kalyagin, Ana C. Matos and Franck Wielonsky
Journal: Math. Comp. 80 (2011), 931-958
MSC (2010): Primary 41A21, 41A20, 41A28, 42A16, 31C15, 31C20
DOI: https://doi.org/10.1090/S0025-5718-2010-02411-1
Published electronically: September 27, 2010
MathSciNet review: 2772102
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In order to reduce the Gibbs phenomenon exhibited by the partial Fourier sums of a periodic function $ f$, defined on $ [-\pi,\pi]$, discontinuous at 0,

Driscoll and Fornberg considered so-called singular Fourier-Padé approximants constructed from the Hermite-Padé approximants of the system of functions $ (1,g_{1} (z),g_{2} (z))$, where $ g_{1} (z)=\log (1-z)$ and $ g_{2} (z)$ is analytic, such that $ \operatorname{Re}(g_{2} (e^{it}))=f (t)$. Convincing numerical experiments have been obtained by these authors, but no error estimates have been proven so far. In the present paper we study the special case of Nikishin systems and their Hermite-Padé approximants, both theoretically and numerically. We obtain rates of convergence by using orthogonality properties of the functions involved along with results from logarithmic potential theory. In particular, we address the question of how to choose the degrees of the approximants, by considering diagonal and row sequences, as well as linear Hermite-Padé approximants. Our theoretical findings and numerical experiments confirm that these Hermite-Padé approximants are more efficient than the more elementary Padé approximants, particularly around the discontinuity of the goal function $ f$.


References [Enhancements On Off] (What's this?)

  • 1. A.I. Aptekarev, Strong asymptotics of polynomials of simultaneous orthogonality for Nikishin systems, Mat. Sb. 190 (1999) 631-669. MR 1702555 (2001a:42023)
  • 2. G.A. Baker and P.R. Graves-Morris, Padé Approximants, Part I, Encycl. Math., Vol. 13, Addison-Wesley, Reading, MA, 1981. MR 0635619 (83a:41009a)
  • 3. B. Beckermann, A. Matos, F. Wielonsky, Reduction of the Gibbs phenomenon for smooth functions with jumps by the $ \epsilon$-algorithm, J. Comp. and Appl. Math. 219 (2008), 329-349. MR 2441229 (2009h:41011)
  • 4. J.P. Boyd, Defeating Gibbs phenomenon in Fourier and Chebyshev spectral methods for solving differential equations, in Gibbs Phenomenon, A. Jerri, ed., Sampling Publishing, Potsdam, New York (2007).
  • 5. J.P. Boyd and R.J. Ong, Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions, Part I: single-interval schemes, Communications in Computational Physics, 5 (2-4) (2009) 484-497. MR 2513698 (2010c:65016)
  • 6. C. Brezinski, Extrapolation algorithms for filtering series of functions, and treating the Gibbs phenomenon, Numer. Algorithms 36 (2004) 309-329. MR 2108182 (2005g:42005)
  • 7. W.S. Don, S.M. Kaber, M.S. Min, Fourier-Padé approximations and filtering for the spectral simulations of incompressible Boussinesq convection problem, Math. Comp. 76 (2007) 1275-1290. MR 2299774 (2008b:76144)
  • 8. T. Driscoll, B. Fornberg, A Padé-based algorithm for overcoming the Gibbs phenomenon, Numer. Algorithms 26 (2001) 77-92. MR 1827318 (2002b:65007)
  • 9. K. Eckhoff, Accurate and efficient reconstruction of discontinuous functions from truncated series expansions, Math. Comp. 61 (1993), 745-763. MR 1195430 (94a:65073)
  • 10. K. Eckhoff, Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions, Math. Comp. 64 (1995), 671-690. MR 1265014 (95f:65234)
  • 11. K. Eckhoff, On a higher order numerical method for functions with singularities, Math. Comp. 67 (1998), 1063-1087. MR 1459387 (98j:65014)
  • 12. U. Fidalgo Prieto, G. Lopez-Lagomasino, Rate of convergence of generalized Hermite-Padé approximants of Nikishin systems, Constr. Approx. 23 (2006), 165-196. MR 2186304 (2006h:41017)
  • 13. A.A. Gonchar, E.A. Rakhmanov, On the convergence of simultaneous Padé approximants for systems of functions of Markov type, Proc. Steklov Inst. Math. (1983), no. 3.
  • 14. A.A. Gonchar, E.A. Rakhmanov, Equilibrium measure and the distribution of zeros of extremal polynomials, Math. USSR Sb. 53 (1986), 119-130.
  • 15. A.A. Gonchar, E.A. Rakhmanov, V.N. Sorokin, Hermite-Padé approximants for systems of Markov functions, Math. Sb. 188 (1997), 33-58. MR 1478629 (98h:41017)
  • 16. D. Gottlieb, C.-W. Shu, On the Gibbs phenomenon and its resolution, SIAM Rev. 39 (1997), 644-668. MR 1491051 (98m:42002)
  • 17. S. Helsen, M. Van Barel, A numerical solution of the constrained energy problem, J. Comp. Appl. Math., 189 (2006), 442-452. MR 2202989 (2006i:35059)
  • 18. G. Kvernadze, Approximating the jump discontinuities of a function by its Fourier-Jacobi coefficients, Math. Comp. 73 (2003), 731-751. MR 2031403 (2004j:42026)
  • 19. N.S. Landkof, Foundations of Modern Potential Theory, Grundlehren der Math. Wissenschaften, Vol. 190, Springer-Verlag, Berlin, 1972. MR 0350027 (50:2520)
  • 20. E.M. Nikishin, On simultaneous Padé approximations, Math. USSR Sb. 41 (1982), 409-425.
  • 21. E.M. Nikishin, The asymptotic behavior of linear forms for joint Padé approximations, Soviet Math. 30 (1986).
  • 22. E.M. Nikishin, V.N. Sorokin, Rational Approximations and Orthogonality, Transl. Amer. Math. Soc., Vol. 92, Providence, RI (1991). MR 1130396 (92i:30037)
  • 23. T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, 1995. MR 1334766 (96e:31001)
  • 24. E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Grundlehren der Math. Wissenschaften, Vol. 316, Springer-Verlag, Berlin, 1997. MR 1485778 (99h:31001)
  • 25. H. Stahl and V. Totik, General orthogonal polynomials, Cambridge University Press, 1992. MR 1163828 (93d:42029)
  • 26. V. Totik, Weighted Approximation with Varying Weights Lecture Notes in Mathematics, 1569, Springer-Verlag, 1994. MR 1290789 (96f:41002)
  • 27. G. Szegö, Orthogonal polynomials, 4th Edition, Colloquium Publications, Vol. 23, Amer. Math. Soc., Providence, RI, 1975. MR 0372517 (51:8724)
  • 28. P. Wynn, Transformations to accelerate the convergence of Fourier series, in: Gertrude Blanch Anniversary Volume, Wright Patterson Air Force Base, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force (1967) 339-379. MR 0215553 (35:6393)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 41A21, 41A20, 41A28, 42A16, 31C15, 31C20

Retrieve articles in all journals with MSC (2010): 41A21, 41A20, 41A28, 42A16, 31C15, 31C20


Additional Information

Bernhard Beckermann
Affiliation: Laboratoire Mathématiques, P. Painlevé UMR CNRS 8524, Université de Lille 1, France
Email: bbecker@math.univ-lille1.fr

Valeriy Kalyagin
Affiliation: Higher School of Economics Nizhny Novgorod, Russia
Email: kalia@hse.nnov.ru

Ana C. Matos
Affiliation: Laboratoire Mathématiques, P. Painlevé UMR CNRS 8524, Université de Lille 1, France
Email: Ana.Matos@math.univ-lille1.fr

Franck Wielonsky
Affiliation: Laboratoire Mathématiques, P. Painlevé UMR CNRS 8524, Université de Lille 1, France
Email: Franck.Wielonsky@math.univ-lille1.fr

DOI: https://doi.org/10.1090/S0025-5718-2010-02411-1
Received by editor(s): July 7, 2009
Received by editor(s) in revised form: January 15, 2010
Published electronically: September 27, 2010
Additional Notes: This work was supported by INTAS network NeCCA 03-51-6637 and partly by RFBR 08-01-00179
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society