Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation


Authors: Chang-Ming Chen, F. Liu, V. Anh and I. Turner
Journal: Math. Comp. 81 (2012), 345-366
MSC (2010): Primary 65M20, 65L06, 65R10, 26A33
DOI: https://doi.org/10.1090/S0025-5718-2011-02447-6
Published electronically: June 9, 2011
MathSciNet review: 2833498
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Anomalous subdiffusion equations have in recent years received much attention. In this paper, we consider a two-dimensional variable-order anomalous subdiffusion equation. Two numerical methods (the implicit and explicit methods) are developed to solve the equation. Their stability, convergence and solvability are investigated by the Fourier method. Moreover, the effectiveness of our theoretical analysis is demonstrated by some numerical examples.


References [Enhancements On Off] (What's this?)

  • 1. B. Baeumer, M. Meerschaert, Numerical solutions for fractional reaction-diffusion equations, Comput. Math. Appl., 55 (2008), pp. 2212-2226. MR 2413687 (2009d:65133)
  • 2. Chang-Ming Chen, F. Liu, I. Turner, V. Anh, Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comp. Phys., 227 (2007), pp. 886-897. MR 2442379 (2009h:35226)
  • 3. Chang-Ming Chen, F. Liu, K. Burrage, Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation, Appl. Math. Comp., 198 (2008), pp. 754-769. MR 2405817
  • 4. Chang-Ming Chen, F. Liu, V. Anh, Numerical analysis of the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives, Appl. Math. Comp., 204 (2008), pp. 340-351. MR 2458372
  • 5. Chang-Ming Chen, F. Liu, V. Anh, A Fourier method and an extrapolation technique for Stokes' first problem for a heated generalized second grade fluid with fractional derivative, J. Comput. Appl. Math., 223 (2009), pp. 777-789. MR 2478879 (2009m:76031)
  • 6. Chang-Ming Chen, F. Liu, A numerical approximation method for solving a three-dimensional space Galilei invariant fractional advection-diffusion equation, J. Appl. Math. Computing, 30 (2009), pp. 219-236. MR 2496613 (2010d:65197)
  • 7. Chang-Ming Chen, F. Liu, I. Turner, V. Anh, Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation, Numer. Algorithms, 54 (2010), 1-21. MR 2610319
  • 8. C. F. M. Coimbra, Mechanics with variable-order differential operators, Annalen der Physik, 12 (2003), pp. 692-703. MR 2020716 (2005d:26008)
  • 9. K. P. Evans, N. Jacob, Feller semigroups obtained by variable order subordination, Rev. Mat. Comput., 20(2) (2007), pp. 293-307. MR 2351111 (2009i:35361)
  • 10. N. Jacob, H. Leopold, Pseudo differential operators with variable order of differentiation generating Feller semigroup, Integr. Equat. Oper. Th. 17 (1993), pp. 544-553. MR 1243995 (94i:47083)
  • 11. K. Kikuchi, A. Negoro, On Markov processes generated by pseudo differential operator of variable order, Osaka J. Math. 34 (1997), pp. 319-335. MR 1483853 (99a:60078)
  • 12. T. A. M. Langlands, B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comp. Phys., 205 (2005), pp. 719-736. MR 2135000 (2005m:65174)
  • 13. T. A. M. Langlands, B. I. Henry, S. L. Wearne, Anomalous subdiffusion with multispecies linear reaction dynamics, Phys. Rev. E, 77, 021111 (2008). MR 2453275 (2009i:82072)
  • 14. H. G. Leopold, Embedding of function spaces of variable order of differentiation, Czech. Math. J., 49 (1999), pp. 633-644. MR 1708338 (2000g:46045)
  • 15. R. Lin, F. Liu, V. Anh, I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009), pp. 435-445. MR 2531970
  • 16. Y. Lin, C. Xu, Finite difference/spectral approximation for the time-fractional diffusion equation, J. Comp. Phys., 225 (2007), pp. 1533-1552. MR 2349193 (2008i:65200)
  • 17. F. Liu, C. Yang, K. Burrage, Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term, J. Comput. Appl. Math., 231 (2009), pp. 160-176. MR 2532659 (2010g:35162)
  • 18. F. Liu, P. Zhang, V. Anh, K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 191 (2007), pp. 12-20. MR 2385498
  • 19. Q. Liu, F. Liu, I. Turner, V. Anh, Approximation of the L évy-Feller advection-dispersion process by random walk and finite difference method, J. Comp. Phys., 222 (2007), pp. 57-70. MR 2298036 (2008g:60242)
  • 20. C. F. Lorenzo, T. T. Hartley, Initialization, conceptualization and application in the generalized fractional calculus, NASA/TP-1998-208-208415, 1998.
  • 21. C. F. Lorenzo, T. T. Hartley, Variable-order and distributed order fractional operators, Nonlinear Dyn. 29 (2002), pp. 57-98. MR 1926468 (2003j:26005)
  • 22. M. Meerschaert, A. Zoia, The Monte Carlo and fractional kinetics approaches to the underground anomalous subdiffusion of contaminants, Ann. Nucl. Energy, 33 (2006), pp. 223-235.
  • 23. M. Meerschaert, H.-P. Scheffler, C. Tadjeran, Finite difference methods for two-dimensional fractional dispersion equation, J. Comp. Phys., 211 (2006), pp 249-261. MR 2168877 (2006h:65120)
  • 24. C. Tadjeran, M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comp. Phys., 220 (2007), pp, 813-823. MR 2284325 (2008a:65159)
  • 25. I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. MR 1658022 (99m:26009)
  • 26. L. E. S. Ramirez, C. F. M. Coimbra, Variable order constitutive relation for viscoelasticity, Annalen der Physik, 16 (2007), pp. 543-552. MR 2320863
  • 27. T. V. Ratto, M. L. Longo, Anomalous subdiffusion in heterogeneous lipid bilayers, Langmuir, 19 (2003), pp, 1788-1793.
  • 28. M. D. Ruiz-Medina, V. V. Anh, J. M. Angulo, Fractional generalized random fields of variable order, Stoch. Anal. Appl., 22(2) (2004), pp. 775-799. MR 2047278 (2005a:60078)
  • 29. S. G. Samko, B. Ross, Integration and differentiation to a variable fractional order, Integr. Transf. Spec. F., 1 (1993), pp. 277-300. MR 1421643 (97j:26007)
  • 30. M. J. Saxton, Anomalous subdiffusion in fluorescence photobleaching recovery: A Monte Carlo study, Biophys. J., 81 (2001), pp. 2226-2240.
  • 31. P. Schwille, J. Korlach, W. W. Webb, Anomalous subdiffusion of proteins and lipids in membranes observed by fluorescence correlation spectroscopy, Biophys. J., 76 (1999), A391-A391.
  • 32. C. M. Soon, C. F. M. Coimbra, M. H. Kobayashi, Variable viscoelasticity operator, Annalen der Physik, 14 (2005), pp. 378-389.
  • 33. W. Tan, Chaoqi Fu, Ceji Fu, An anomalous subdiffusion model for calcium spark in cardiac myocytes, Appl. Phys. Lett. 91, 183901 (2007), doi:10.1063/1.2805208 .
  • 34. M. Weiss, M. Elsner, F. Kartberg, T. Nilsson, Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells, Biophys. J., 87 (2004), pp. 3518-3524.
  • 35. Q. Yu, F. Liu, V. Anh, I. Turner, Solving linear and non-linear space-time fractional reaction-diffusion equations by the Adomian decomposition method, Int. J. Numer. Meth. Eng., 74 (2008), pp. 138-158. MR 2398497 (2009d:65139)
  • 36. S. B. Yuste, L. Acedo, An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42 (5) (2005), pp. 1862-1874. MR 2139227 (2006d:45008)
  • 37. S. B. Yuste, Weighted average finite difference methods for fractional diffusion equations, J. Comp. Phys., 216 (2006), pp. 264-274. MR 2223444 (2006k:65204)
  • 38. P. Zhuang, F. Liu, Implicit difference approximation for the two-dimensional space-time fractional diffusion equation, J. Appl. Math. Computing, 25 (2007), pp. 269-282. MR 2345431 (2008f:35215)
  • 39. P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47 (2009), pp. 1760-1781. MR 2505873 (2010f:35201)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M20, 65L06, 65R10, 26A33

Retrieve articles in all journals with MSC (2010): 65M20, 65L06, 65R10, 26A33


Additional Information

Chang-Ming Chen
Affiliation: School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
Email: cmchen@xmu.edu.cn

F. Liu
Affiliation: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
Email: f.liu@qut.edu.au

V. Anh
Affiliation: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
Email: v.anh@qut.edu.au

I. Turner
Affiliation: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
Email: i.turner@qut.edu.au

DOI: https://doi.org/10.1090/S0025-5718-2011-02447-6
Keywords: Fractional derivative of variable order, anomalous subdiffusion equation, explicit numerical method
Received by editor(s): November 8, 2009
Received by editor(s) in revised form: April 29, 2010
Published electronically: June 9, 2011
Additional Notes: This research was supported by the Australian Research Council grants DP0559807 and DP0986766, the National Natural Science Foundation of China grant 10271098 and the Natural Science Foundation of Fujian province grant 2009J01014. The authors wish to thank the referee for many useful suggestions to improve this paper.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society