Local solubility and height bounds for coverings of elliptic curves

Authors:
T. A. Fisher and G. F. Sills

Journal:
Math. Comp. **81** (2012), 1635-1662

MSC (2010):
Primary 11G05; Secondary 11G07, 11G50, 11Y50

DOI:
https://doi.org/10.1090/S0025-5718-2012-02587-7

Published electronically:
February 21, 2012

MathSciNet review:
2904595

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study genus one curves that arise as -, - and -coverings of elliptic curves. We describe efficient algorithms for testing local solubility and modify the classical formulae for the covering maps so that they work in all characteristics. These ingredients are then combined to give explicit bounds relating the height of a rational point on one of the covering curves to the height of its image on the elliptic curve. We use our results to improve the existing methods for searching for rational points on elliptic curves.

**[AS]**Amod Agashe and William Stein,*Visibility of Shafarevich-Tate groups of abelian varieties*, J. Number Theory**97**(2002), no. 1, 171–185. MR**1939144**, https://doi.org/10.1006/jnth.2002.2810**[AKMP]**Sang Yook An, Seog Young Kim, David C. Marshall, Susan H. Marshall, William G. McCallum, and Alexander R. Perlis,*Jacobians of genus one curves*, J. Number Theory**90**(2001), no. 2, 304–315. MR**1858080**, https://doi.org/10.1006/jnth.2000.2632**[ARVT]**Michael Artin, Fernando Rodriguez-Villegas, and John Tate,*On the Jacobians of plane cubics*, Adv. Math.**198**(2005), no. 1, 366–382. MR**2183258**, https://doi.org/10.1016/j.aim.2005.06.004**[BSD]**B. J. Birch and H. P. F. Swinnerton-Dyer,*Notes on elliptic curves. I*, J. Reine Angew. Math.**212**(1963), 7–25. MR**0146143**, https://doi.org/10.1515/crll.1963.212.7**[BCP]**Wieb Bosma, John Cannon, and Catherine Playoust,*The Magma algebra system. I. The user language*, J. Symbolic Comput.**24**(1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR**1484478**, https://doi.org/10.1006/jsco.1996.0125**[B]**Nils Bruin,*Some ternary Diophantine equations of signature (𝑛,𝑛,2)*, Discovering mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 63–91. MR**2278923**, https://doi.org/10.1007/978-3-540-37634-7_3**[Ca]**J. W. S. Cassels,*Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung*, J. Reine Angew. Math.**211**(1962), 95–112. MR**0163915**, https://doi.org/10.1515/crll.1962.211.95**[Cr]**J. E. Cremona,*Algorithms for modular elliptic curves*, 2nd ed., Cambridge University Press, Cambridge, 1997. MR**1628193****[Cre]**B.M. Creutz,*Explicit second -descent on elliptic curves*, PhD thesis, Jacobs University Bremen, 2010.**[CFOSS]**J. E. Cremona, T. A. Fisher, C. O’Neil, D. Simon, and M. Stoll,*Explicit 𝑛-descent on elliptic curves. I. Algebra*, J. Reine Angew. Math.**615**(2008), 121–155. MR**2384334**, https://doi.org/10.1515/CRELLE.2008.012**[CFS]**John E. Cremona, Tom A. Fisher, and Michael Stoll,*Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves*, Algebra Number Theory**4**(2010), no. 6, 763–820. MR**2728489**, https://doi.org/10.2140/ant.2010.4.763**[CPS]**J. E. Cremona, M. Prickett, and Samir Siksek,*Height difference bounds for elliptic curves over number fields*, J. Number Theory**116**(2006), no. 1, 42–68. MR**2197860**, https://doi.org/10.1016/j.jnt.2005.03.001**[D]**S. Donnelly,*Computing the Cassels-Tate pairing*, in preparation.**[E]**Noam D. Elkies,*Rational points near curves and small nonzero |𝑥³-𝑦²| via lattice reduction*, Algorithmic number theory (Leiden, 2000) Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 33–63. MR**1850598**, https://doi.org/10.1007/10722028_2**[F1]**Tom Fisher,*The invariants of a genus one curve*, Proc. Lond. Math. Soc. (3)**97**(2008), no. 3, 753–782. MR**2448246**, https://doi.org/10.1112/plms/pdn021**[F2]**Tom Fisher,*Some improvements to 4-descent on an elliptic curve*, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, pp. 125–138. MR**2467841**, https://doi.org/10.1007/978-3-540-79456-1_8**[F3]**T.A. Fisher,*The Hessian of a genus one curve*, to appear in Proc. Lond. Math. Soc.**[F4]**T.A. Fisher,*Higher descents on an elliptic curve with a rational -torsion point*, in preparation.**[FS]**T.A. Fisher and G.F. Sills,*Local solubility and height bounds for coverings of elliptic curves*, longer version of this paper,`arXiv:1103.4944v1 [math.NT]`**[HS]**Marc Hindry and Joseph H. Silverman,*Diophantine geometry*, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. An introduction. MR**1745599****[MSS]**J. R. Merriman, S. Siksek, and N. P. Smart,*Explicit 4-descents on an elliptic curve*, Acta Arith.**77**(1996), no. 4, 385–404. MR**1414518**, https://doi.org/10.4064/aa-77-4-385-404**[Sa]**M.M. Sadek,*Models of genus one curves*, PhD thesis, University of Cambridge, 2009.**[SS]**Edward F. Schaefer and Michael Stoll,*How to do a 𝑝-descent on an elliptic curve*, Trans. Amer. Math. Soc.**356**(2004), no. 3, 1209–1231. MR**2021618**, https://doi.org/10.1090/S0002-9947-03-03366-X**[Si1]**S. Siksek,*Descent on curves of genus one*, PhD thesis, University of Exeter, 1995.`http://www.warwick.ac.uk/staff/S.Siksek/papers/phdnew.pdf`**[Si2]**Samir Siksek,*Infinite descent on elliptic curves*, Rocky Mountain J. Math.**25**(1995), no. 4, 1501–1538. MR**1371352**, https://doi.org/10.1216/rmjm/1181072159**[S]**G.F. Sills,*Height bounds for -coverings*, PhD thesis, University of Cambridge, 2010.**[Sta]**S. Stamminger,*Explicit 8-descent on elliptic curves*, PhD thesis, International University Bremen, 2005.**[Sto]**M. Stoll,*Descent on elliptic curves*, lecture notes,`arXiv:math/0611694v1 [math.NT]`**[W]**T. Womack,*Explicit descent on elliptic curves*, PhD thesis, University of Nottingham, 2003.`http://www.warwick.ac.uk/staff/J.E.Cremona/`

Retrieve articles in *Mathematics of Computation*
with MSC (2010):
11G05,
11G07,
11G50,
11Y50

Retrieve articles in all journals with MSC (2010): 11G05, 11G07, 11G50, 11Y50

Additional Information

**T. A. Fisher**

Affiliation:
University of Cambridge, DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, United Kingdom

Email:
T.A.Fisher@dpmms.cam.ac.uk

**G. F. Sills**

Affiliation:
University of Cambridge, DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, United Kingdom

Email:
gs300@cantab.net

DOI:
https://doi.org/10.1090/S0025-5718-2012-02587-7

Received by editor(s):
October 21, 2010

Received by editor(s) in revised form:
March 28, 2011

Published electronically:
February 21, 2012

Article copyright:
© Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.