Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data

Authors: S. Mishra and Ch. Schwab
Journal: Math. Comp. 81 (2012), 1979-2018
MSC (2010): Primary 65N30, 65M06, 35L65
Published electronically: April 5, 2012
MathSciNet review: 2945145
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider scalar hyperbolic conservation laws in spatial dimension $ d\geq 1$ with stochastic initial data. We prove existence and uniqueness of a random-entropy solution and give sufficient conditions on the initial data that ensure the existence of statistical moments of any order $ k$ of this random entropy solution. We present a class of numerical schemes of multi-level Monte Carlo Finite Volume (MLMC-FVM) type for the approximation of the ensemble average of the random entropy solutions as well as of their $ k$-point space-time correlation functions. These schemes are shown to obey the same accuracy vs. work estimate as a single application of the finite volume solver for the corresponding deterministic problem. Numerical experiments demonstrating the efficiency of these schemes are presented. In certain cases, statistical moments of discontinuous solutions are found to be more regular than pathwise solutions.

References [Enhancements On Off] (What's this?)

  • 1. R. Abgrall. A simple, flexible and generic deterministic approach to uncertainty quantification in non-linear problems.
    Rapport de Recherche, INRIA, 2007.
  • 2. A. Barth, Ch. Schwab and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients, Numer. Math., 119 (2011), no. 1, 123-161. MR 2824857
  • 3. Q. Y. Chen, D. Gottlieb and J. S. Hesthaven.
    Uncertainty analysis for steady flow in a dual throat nozzle.
    J. Comput. Phys, 204, 2005, 378-398. MR 2121912 (2005j:76075)
  • 4. Giuseppe Da Prato and Jerzy Zabcyk, Stochastic Equations in infinite dimensions, Cambridge Univ. Press (1991).
  • 5. Constantine M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics (2nd Ed.), Springer-Verlag (2005). MR 2169977 (2006d:35159)
  • 6. Weinan E, K. Khanin, A. Mazel and Y. Sinai.
    Invariant measures for the Burgers equation with stochastic forcing.
    Ann. Math., 151, 2000, 877-960. MR 1779561 (2002e:37134)
  • 7. M. Giles.
    Improved multilevel Monte Carlo convergence using the Milstein scheme.
    In Monte Carlo and quasi-Monte Carlo methods 2006, 343-358, Springer, Berlin, 2008. MR 2479233 (2010c:65007)
  • 8. M. Giles.
    Multilevel Monte Carlo path simulation.
    Oper. Res., 56, 2008, 607-617. MR 2436856 (2009g:65008)
  • 9. E. Godlewski and P. A. Raviart, Hyperbolic Systems of Conservation Laws Mathematiques and Applications, Ellipses Publ. Paris (1991). MR 1304494 (95i:65146)
  • 10. E. Godlewski and P. A. Raviart, The numerical solution of multidimensional Hyperbolic Systems of Conservation Laws, Springer-Verlag, Berlin, Heidelberg, New York (1995).
  • 11. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, Vol. VII, pp. 713-1020, North-Holland, Amsterdam, (2000). MR 1804748 (2002e:65138)
  • 12. S. Heinrich. Multilevel Monte Carlo methods
    in Large-scale scientific computing, Third international conference LSSC 2001, Sozopol, Bulgaria, 2001, Lecture Notes in Computer Science, Vol. 2170, Springer-Verlag (2001), pp. 58-67.
  • 13. H. Holden and N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws Applied Mathematical Sciences 152, 2nd Printing, Springer-Verlag (2007). MR 1912206 (2003e:35001)
  • 14. H. Holden and N. H. Risebro,
    Conservation laws with a random source,
    Applied Mathematics and Optimization. An International Journal with Applications to Stochastics 36(1997)(2) pp. 229-241. MR 1455435 (98c:35108)
  • 15. H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe and T.-S. Zhang,
    The Burgers equation with a noisy force and the stochastic heat equation,
    Comm. Partial Differential Equations 19 (1994), (1-2) pp. 119-141. MR 1257000 (95d:60103)
  • 16. D. Kröner,
    Numerical Schemes for Conservation Laws,
    J. Wiley and B.G. Teubner Publ., Chichester UK and Stuttgart, FRG (1997) MR 1437144 (98b:65003)
  • 17. R.A. LeVeque, Numerical Solution of Hyperbolic Conservation Laws, Cambridge Univ. Press, 2005.
  • 18. W.A. Light and E.W. Cheney, Approximation Theory in Tensor Product Spaces
    Lecture Notes in Mathematics 1169,
    Springer-Verlag, Heidelberg, New York (1980). MR 817984 (87g:41064)
  • 19. G. Lin, C.H. Su and G.E. Karniadakis.
    The stochastic piston problem.
    PNAS 101(2004), pp. 15840-15845. MR 2099197 (2005f:76080)
  • 20. S. Mishra and Ch. Schwab, Entropy Stability of stochastic Galerkin and inifinite dimensional hyperbolic systems obtained from general moment closures, Working Paper, SAM, 2011.
  • 21. S. Mishra, Ch. Schwab and J. Šukys, Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions, Report 2011-53, SAM, February 2011 (in review).
  • 22. G. Poette, B . Després and D. Lucor.
    Uncertainty quantification for systems of conservation laws,
    J. Comput. Phys. 228(2009) pp. 2443-2467. MR 2501693 (2010c:65014)
  • 23. T. von Petersdorff and Ch. Schwab, Sparse Finite Element Methods for Operator Equations with Stochastic Data, Applications of Mathematics 51(2) (2006) 145-180. MR 2212311 (2007g:65111)
  • 24. Ch. Schwab and S. Tokareva, High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data, Report SAM 2011-53.
  • 25. J. Smoller,
    Shock waves and reaction-diffuion equations, 2nd Ed.,
    Springer-Verlag, Berlin, Heidelberg, New York (1993). MR 1301779 (95g:35002)
  • 26. R. A. Todor,
    A new approach to energy-based sparse finite-element spaces,
    IMA Journal of Numerical Analysis 29 (2009) (1), pp. 72-85. MR 2470940 (2010b:65266)
  • 27. J. Tryoen, O. Le Maitre, M. Ndjinga and A. Ern.
    Intrusive projection methods with upwinding for uncertain non-linear hyperbolic systems
    J. Comput. Phys., 229, 18(1) (2010), 6485-6511. MR 2660316 (2011e:65205)
  • 28. X. Wan and G. E. Karniadakis.
    Long-term behaviour of polynomial chaos in stochastic flow simulations,
    Comput. Meth. Appl. Mech. Engg. 195(2006), pp. 5582-5596. MR 2243318 (2007b:65136)
  • 29. W.P. Ziemer.
    Weakly Differentiable Functions,
    Graduate Texts in Mathematics,
    Springer-Verlag, Berlin, Heidelberg, New York (1989). MR 1014685 (91e:46046)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N30, 65M06, 35L65

Retrieve articles in all journals with MSC (2010): 65N30, 65M06, 35L65

Additional Information

S. Mishra
Affiliation: Seminar for Applied Mathematics, ETH, HG G. 57.2, Rämistrasse 101, Zürich, Switzerland

Ch. Schwab
Affiliation: Seminar for Applied Mathematics, ETH, HG G. 57.1, Rämistrasse 101, Zürich, Switzerland

Received by editor(s): August 31, 2010
Received by editor(s) in revised form: May 25, 2011
Published electronically: April 5, 2012
Additional Notes: The work of Ch. Schwab was supported in part by ERC grant no. 247277. Ch. Schwab and S. Mishra acknowledge also partial support from ETH grant no. CH1-03 10-1. S. Mishra wishes to thank Claude J. Gittelson for useful discussions.
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society