A domain decomposition method for semilinear hyperbolic systems with two-scale relaxations

Authors:
Shi Jin, Jian-guo Liu and Li Wang

Journal:
Math. Comp. **82** (2013), 749-779

MSC (2010):
Primary 65M55, 35L50

Published electronically:
October 9, 2012

MathSciNet review:
3008837

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a domain decomposition method on a semilinear hyperbolic system with multiple relaxation times. In the region where the relaxation time is small, an asymptotic equilibrium equation can be used for computational efficiency. An interface condition based on the sign of the characteristic speed at the interface is provided to couple the two systems in a domain decomposition setting. A rigorous analysis, based on the Laplace Transform, on the error estimate is presented for the linear case, which shows how the error of the domain decomposition method depends on the smaller relaxation time, and the boundary and interface layer effects. The given convergence rate is optimal. We present a numerical implementation of this domain decomposition method, and give some numerical results in order to study the performance of this method.

**[1]**Guillaume Bal and Yvon Maday,*Coupling of transport and diffusion models in linear transport theory*, M2AN Math. Model. Numer. Anal.**36**(2002), no. 1, 69–86. MR**1916293**, 10.1051/m2an:2002007**[2]**Stefano Bianchini,*Hyperbolic limit of the Jin-Xin relaxation model*, Comm. Pure Appl. Math.**59**(2006), no. 5, 688–753. MR**2172805**, 10.1002/cpa.20114**[3]**J.-F. Bourgat, P. Le Tallec, B. Perthame, and Y. Qiu,*Coupling Boltzmann and Euler equations without overlapping*, Domain decomposition methods in science and engineering (Como, 1992), Contemp. Math., vol. 157, Amer. Math. Soc., Providence, RI, 1994, pp. 377–398. MR**1262639**, 10.1090/conm/157/01439**[4]**Alberto Bressan,*Hyperbolic systems of conservation laws*, Oxford Lecture Series in Mathematics and its Applications, vol. 20, Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem. MR**1816648****[5]**Carlo Cercignani,*The Boltzmann equation and its applications*, Applied Mathematical Sciences, vol. 67, Springer-Verlag, New York, 1988. MR**1313028****[6]**A. Chalabi and D. Seghir,*Convergence of relaxation schemes for initial boundary value problems for conservation laws*, Comput. Math. Appl.**43**(2002), no. 8-9, 1079–1093. MR**1892486**, 10.1016/S0898-1221(02)80014-1**[7]**Gui Qiang Chen, C. David Levermore, and Tai-Ping Liu,*Hyperbolic conservation laws with stiff relaxation terms and entropy*, Comm. Pure Appl. Math.**47**(1994), no. 6, 787–830. MR**1280989**, 10.1002/cpa.3160470602**[8]**Pierre Degond, Giacomo Dimarco, and Luc Mieussens,*A multiscale kinetic-fluid solver with dynamic localization of kinetic effects*, J. Comput. Phys.**229**(2010), no. 13, 4907–4933. MR**2643635**, 10.1016/j.jcp.2010.03.009**[9]**Pierre Degond and Shi Jin,*A smooth transition model between kinetic and diffusion equations*, SIAM J. Numer. Anal.**42**(2005), no. 6, 2671–2687 (electronic). MR**2139410**, 10.1137/S0036142903430414**[10]**Pierre Degond, Shi Jin, and Luc Mieussens,*A smooth transition model between kinetic and hydrodynamic equations*, J. Comput. Phys.**209**(2005), no. 2, 665–694. MR**2151999**, 10.1016/j.jcp.2005.03.025**[11]**Pierre Degond, Jian-Guo Liu, and Luc Mieussens,*Macroscopic fluid models with localized kinetic upscaling effects*, Multiscale Model. Simul.**5**(2006), no. 3, 940–979 (electronic). MR**2272306**, 10.1137/060651574**[12]**Pierre Degond and Christian Schmeiser,*Kinetic boundary layers and fluid-kinetic coupling in semiconductors*, Transport Theory Statist. Phys.**28**(1999), no. 1, 31–55. MR**1669742**, 10.1080/00411459908214514**[13]**François Golse, Shi Jin, and C. David Levermore,*A domain decomposition analysis for a two-scale linear transport problem*, M2AN Math. Model. Numer. Anal.**37**(2003), no. 6, 869–892. MR**2026400**, 10.1051/m2an:2003059**[14]**Robert L. Higdon,*Initial-boundary value problems for linear hyperbolic systems*, SIAM Rev.**28**(1986), no. 2, 177–217. MR**839822**, 10.1137/1028050**[15]**Shi Jin and Zhou Ping Xin,*The relaxation schemes for systems of conservation laws in arbitrary space dimensions*, Comm. Pure Appl. Math.**48**(1995), no. 3, 235–276. MR**1322811**, 10.1002/cpa.3160480303**[16]**Heinz-Otto Kreiss,*Initial boundary value problems for hyperbolic systems*, Comm. Pure Appl. Math.**23**(1970), 277–298. MR**0437941****[17]**Axel Klar,*Convergence of alternating domain decomposition schemes for kinetic and aerodynamic equations*, Math. Methods Appl. Sci.**18**(1995), no. 8, 649–670. MR**1335825**, 10.1002/mma.1670180806**[18]**A. Klar, H. Neunzert, J. Struckmeier,*Transition from kinetic theory to macroscopic fluid equations: a problem for domain decomposition and a source for new algorithm,*Transp. Theory and Stat. Phys. 29, 93-106, 2000.**[19]**S. N. Kružkov,*First order quasilinear equations with several independent variables.*, Mat. Sb. (N.S.)**81 (123)**(1970), 228–255 (Russian). MR**0267257****[20]**L.D. Landau, E.M. Lifschitz,*Statistical Physics,*Elsevier (Singapore) Pte Ltd, 1980.**[21]**Randall J. LeVeque and Zhi Lin Li,*The immersed interface method for elliptic equations with discontinuous coefficients and singular sources*, SIAM J. Numer. Anal.**31**(1994), no. 4, 1019–1044. MR**1286215**, 10.1137/0731054**[22]**C. David Levermore,*Moment closure hierarchies for kinetic theories*, J. Statist. Phys.**83**(1996), no. 5-6, 1021–1065. MR**1392419**, 10.1007/BF02179552**[23]**Andrew Majda and Stanley Osher,*Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary*, Comm. Pure Appl. Math.**28**(1975), no. 5, 607–675. MR**0410107****[24]**Roberto Natalini,*Convergence to equilibrium for the relaxation approximations of conservation laws*, Comm. Pure Appl. Math.**49**(1996), no. 8, 795–823. MR**1391756**, 10.1002/(SICI)1097-0312(199608)49:8<795::AID-CPA2>3.0.CO;2-3**[25]**Roberto Natalini,*Recent results on hyperbolic relaxation problems*, Analysis of systems of conservation laws (Aachen, 1997) Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., vol. 99, Chapman & Hall/CRC, Boca Raton, FL, 1999, pp. 128–198. MR**1679940****[26]**Roberto Natalini and Bernard Hanouzet,*Weakly coupled systems of quasilinear hyperbolic equations*, Differential Integral Equations**9**(1996), no. 6, 1279–1292. MR**1409928****[27]**James V. Ralston,*Note on a paper of Kreiss*, Comm. Pure Appl. Math.**24**(1971), no. 6, 759–762. MR**0606239****[28]**Zhen-Huan Teng,*First-order 𝐿¹-convergence for relaxation approximations to conservation laws*, Comm. Pure Appl. Math.**51**(1998), no. 8, 857–895. MR**1620220**, 10.1002/(SICI)1097-0312(199808)51:8<857::AID-CPA1>3.3.CO;2-M**[29]**M. Tidriri,*New models for the solution of intermediate regimes in transport theory and radiative transfer: existence theory, positivity, asymptotic analysis, and approximations*, J. Statist. Phys.**104**(2001), no. 1-2, 291–325. MR**1851390**, 10.1023/A:1010365812733**[30]**W.G. Vincenti, C.H. Kruger,*Introduction to Physical Gas Dynamics,*Wiley, New York, 1965.**[31]**Wei-Cheng Wang and Zhouping Xin,*Asymptotic limit of initial-boundary value problems for conservation laws with relaxational extensions*, Comm. Pure Appl. Math.**51**(1998), no. 5, 505–535. MR**1604274**, 10.1002/(SICI)1097-0312(199805)51:5<505::AID-CPA3>3.0.CO;2-C**[32]**G. B. Whitham,*Linear and nonlinear waves*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR**0483954****[33]**Zhouping Xin and Wen-Qing Xu,*Stiff well-posedness and asymptotic convergence for a class of linear relaxation systems in a quarter plane*, J. Differential Equations**167**(2000), no. 2, 388–437. MR**1793199**, 10.1006/jdeq.2000.3806**[34]**Zhouping Xin and Wen-Qing Xu,*Initial-boundary value problem to systems of conservation laws with relaxation*, Quart. Appl. Math.**60**(2002), no. 2, 251–281. MR**1900493****[35]**Wen-Qing Xu,*Boundary conditions for multi-dimensional hyperbolic relaxation problems*, Discrete Contin. Dyn. Syst.**suppl.**(2003), 916–925. Dynamical systems and differential equations (Wilmington, NC, 2002). MR**2018201****[36]**Xu Yang, Francois Golse, Zhongyi Huang, and Shi Jin,*Numerical study of a domain decomposition method for a two-scale linear transport equation*, Netw. Heterog. Media**1**(2006), no. 1, 143–166. MR**2219280**, 10.3934/nhm.2006.1.143

Retrieve articles in *Mathematics of Computation*
with MSC (2010):
65M55,
35L50

Retrieve articles in all journals with MSC (2010): 65M55, 35L50

Additional Information

**Shi Jin**

Affiliation:
Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison, Wisconsin 53706

Email:
jin@math.wisc.edu

**Jian-guo Liu**

Affiliation:
Department of Physics and Department of Mathematics, Duke University, Durham, North Carolina 27708

Email:
Jian-Guo.Liu@duke.edu

**Li Wang**

Affiliation:
Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison, Wisconsin 53706

Email:
wangli@math.wisc.edu

DOI:
https://doi.org/10.1090/S0025-5718-2012-02643-3

Received by editor(s):
February 17, 2011

Received by editor(s) in revised form:
October 9, 2011

Published electronically:
October 9, 2012

Additional Notes:
This research was partially supported by NSF grant No. DMS-0608720, and NSF FRG grant DMS-0757285. The first author was also supported by a Van Vleck Distinguished Research Prize and a Vilas Associate Award from the University of Wisconsin-Madison

The second author research was supported by NSF grant DMS 1011738

Article copyright:
© Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.