Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Generators of rational spectral transformations for nontrivial $ \mathcal{C}$-functions


Authors: Kenier Castillo and Francisco Marcellán
Journal: Math. Comp. 82 (2013), 1057-1068
MSC (2010): Primary 42C05
DOI: https://doi.org/10.1090/S0025-5718-2012-02655-X
Published electronically: November 28, 2012
MathSciNet review: 3008849
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we consider transformations of sequences of orthogonal polynomials associated with a Hermitian linear functional $ \mathcal {L}$ using spectral transformations of the corresponding $ \mathcal {C}$-function $ F_{\mathcal {L}}$. We show that a rational spectral transformation of $ F_{\mathcal {L}}$ with polynomial coefficients is a finite composition of four canonical spectral transformations.


References [Enhancements On Off] (What's this?)

  • 1. M. J. Cantero, L. Moral, and L. Velázquez, Direct and inverse polynomial perturbations of hermitian linear functionals, J. Approx. Theory 163 (2011), 988-1028. MR 2832761
  • 2. C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen die gegbene Werter nicht annehmen, Math. Ann. 64 (1907), 95-115. MR 1511425
  • 3. K. Castillo, L. Garza, and F. Marcellán, A new linear spectral transformation associated with derivatives of Dirac linear functionals, J. Approx. Theory 163 (2011), 1834-1853.
  • 4. K. Castillo, L. Garza, and F. Marcellán, Laurent polynomials perturbations of linear functional. An inverse problem, Electron. Trans. Numer. Anal. 36 (2010), 83-98. MR 2779999 (2012b:42043)
  • 5. K. Castillo, L. Garza, and F. Marcellán, Perturbations on the subdiagonals of Toeplitz matrices, Linear Algebra Appl. 343 (2011), 1563-1579. MR 2775766 (2012c:42058)
  • 6. T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York (1978). MR 0481884 (58:1979)
  • 7. L. Daruis, J. Hernández, and F. Marcellán, Spectral transformations for Hermitian Toeplitz matrices, J. Comput. Appl. Math. 202 (2007), 155-176. MR 2319946 (2008c:42025)
  • 8. L. Garza, J. Hernández, and F. Marcellán, Spectral transformations of measures supported on the unit circle and the Szegő transformation, Numer. Algorithms, 49 (2008), 169-185. MR 2457097 (2009k:42046)
  • 9. L. Garza, J. Hernández, and F. Marcellán, Orthogonal polynomials and measures on the unit circle. The Geronimus transformations, J. Comput. Appl. Math. 233 (2010), 1220-1231. MR 2559359 (2011c:42070)
  • 10. L. Garza and F. Marcellán, Linear spectral transformations and Laurent polynomials, Mediterr. J. Math. 6 (2009), 273-289. MR 2551677 (2011c:42069)
  • 11. Ya. L. Geronimus, On the trigonometric moment problem, Ann. of Math. 47 (1946), 742-761. MR 0018265 (8:265d)
  • 12. Ya. L. Geronimus, Orthogonal polynomials (English translation of the appendix to Russian translation of Szegő book [27]) Fizmatgiz, 1961, in: Two Paper on Special Fuctions, Amer. Math. Soc. Transl. Ser. 2, 108, Amer. Math. Soc., Providence, RI (1977), 37-130.
  • 13. Ya. L. Geronimus, Polynomials orthogonal on a circle and their applications, In series and Approximation, Amer. Math. Soc. Transl. Ser. 1, 3, Amer. Math. Soc., Providence, RI (1962), 1-78. MR 0061706 (15:869i)
  • 14. E. Godoy and F. Marcellán, An analogue of the Christoffel formula for polynomial modification of a measure on the unit circle, Boll. Un. Mat. Ital. 5-A (1991), 1-12. MR 1101005 (92c:42022)
  • 15. E. Godoy and F. Marcellán, Orthogonal polynomials and rational modifications of measures, Canad. J. Math. 45 (1993), 930-943. MR 1239908 (95a:42031)
  • 16. U. Grenander and G. Szegő, Toeplitz Forms and their Applications, second ed., Chelsea, New York, 1984. MR 890515 (88b:42031)
  • 17. G. Herglotz, Über Potenzreihen mit positivem, reellem Teil im Einheitskreis, Ber. Ver. Ges. wiss Leipzig 63 (1911), 501-511.
  • 18. F. Marcellán, J. S. Dehesa, and A. Ronveaux, On orthogonal polynomials with perturbed recurrence relations, J. Comput. Appl. Math. 30 (1990), 203-212. MR 1062324 (91h:33003)
  • 19. F. Marcellán and R. Álvarez-Nodarse, On the Favard theorem and its extensions, J. Comput. Appl. Math. 127 (2001), 231-254. MR 1808576 (2001m:42048)
  • 20. F. Marcellán and G. Sansigre, Orthogonal polynomials on the unit circle: symmetrization and quadratic decomposition, J. Approx. Theory 65 (1991), 109-119. MR 1098834 (92h:42035)
  • 21. F. Peherstorfer, A special class of polynomials orthogonal on the unit circle including the associated polynomials, Constr. Approx. 12 (1996), 161-185. MR 1393285 (97d:42023)
  • 22. F. Peherstorfer, Finite perturbations of orthogonal polynomials, J. Comput. Appl. Math. 44 (1992), 275-302. MR 1199259 (94d:42029)
  • 23. F. Peherstorfer and R. Steinbauer, Characterization of orthogonal polynomials with respect to a functional, J. Comput. Appl. Math. 65 (1992), 275-302. MR 1379142 (97b:42045)
  • 24. F. Riesz, Sur certains systèmes singuliers d'équations intégrales, Ann. Sci. Ecole Norm. Super. 28 (1911), 33-62. MR 1509135
  • 25. B. Simon, Orthogonal polynomials on the unit circle, Amer. Math. Soc. Colloq. Publ., 54, Amer. Math. Soc. Providence, RI, 2005.
  • 26. C. Suárez, Polinomios ortogonales relativos a modificaciones de funcionales regulares y hermitianos, Doctoral Dissertation, Departamento de Matemática Aplicada, Universidad de Vigo, 1993. In Spanish.
  • 27. G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1975. Fourth Edition. MR 0372517
  • 28. A. Zhedanov, Rational spectral transformations and orthogonal polynomials, J. Comput. Appl. Math. 85 (1997), 67-86. MR 1482157 (98h:42026)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 42C05

Retrieve articles in all journals with MSC (2010): 42C05


Additional Information

Kenier Castillo
Affiliation: Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III, Leganés-Madrid, Spain
Email: kcastill@math.uc3m.es

Francisco Marcellán
Affiliation: Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III, Leganés-Madrid, Spain
Email: pacomarc@ing.uc3m.es

DOI: https://doi.org/10.1090/S0025-5718-2012-02655-X
Received by editor(s): August 31, 2011
Published electronically: November 28, 2012
Additional Notes: The work of the authors was supported by Dirección General de Investigación, Ministerio de Ciencia e Innovación of Spain, grant MTM2009-12740-C03-01.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society