Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 


Error bounds of Gaussian quadrature formulae for one class of Bernstein-Szegő weights

Author: Miodrag M. Spalević
Journal: Math. Comp. 82 (2013), 1037-1056
MSC (2010): Primary 41A55; Secondary 65D30, 65D32
Published electronically: December 14, 2012
MathSciNet review: 3008848
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The kernels $ K_n(z)$ in the remainder terms $ R_n(f)$ of the Gaussian quadrature formulae for analytic functions $ f$ inside elliptical contours with foci at $ \mp 1$ and a sum of semi-axes $ \rho >1$, when the weight function $ w$ is of Bernstein-Szegő type

$\displaystyle w(t)\equiv w_\gamma ^{(-1/2,1/2)}(t)=\displaystyle \sqrt {\frac {... {4\gamma }{(1+\gamma )^2}\,t^2}, \quad t\in (-1,1),\quad \gamma \in (-1,0), $

are studied. Sufficient conditions are found ensuring that the kernel attains its maximal absolute value at the intersection point of the contour with the positive real semi-axis. This leads to effective error bounds of the corresponding Gauss quadratures. The quality of the derived bounds is analyzed by a comparison with other error bounds intended for the same class of integrands. In part our analysis is based on the well-known Cardano formulas, which are not very popular among mathematicians.

References [Enhancements On Off] (What's this?)

  • 1. W. Gautschi and S. E. Notaris, Gauss-Kronrod quadrature formulae for weight function of Bernstein-Szegő type, J. Comput. Appl. Math. 25 (1989), 199-224; erratum in J. Comput. Appl. Math. 27 (1989), 429. MR 988057 (90d:65045)
  • 2. W. Gautschi and R. S. Varga, Error bounds for Gaussian quadrature of analytic functions, SIAM J. Numer. Anal. 20 (1983), 1170-1186. MR 723834 (85j:65010)
  • 3. W. Gautschi, E. Tychopoulos and R. S. Varga, A note on the contour integral representation of the remainder term for a Gauss-Chebyshev quadrature rule, SIAM J. Numer. Anal. 27 (1990), 219-224. MR 1034931 (91d:65044)
  • 4. D. B. Hunter, Some error expansions for Gaussian quadrature, BIT 35 (1995), 64-82. MR 1429008 (97i:65040)
  • 5. S. E. Notaris, The error norm of Gaussian quadrature formulae for weight functions of Bernstein-Szegő type, Numer. Math. 57 (1990), 271-283. MR 1057125 (92a:65080)
  • 6. F. Peherstorfer, On the remainder of Gaussian quadrature formulas for Bernstein-Szegő weight functions, Math. Comp. 60 (1993), 317-325. MR 1153169 (93d:65030)
  • 7. R. Scherer, T. Schira, Estimating quadrature errors for analytic functions using kernel representations and biorthogonal systems, Numer. Math. 84 (2000), 497-518. MR 1738478 (2001d:65034)
  • 8. T. Schira, The remainder term for analytic functions of symmetric Gaussian quadratures, Math. Comp. 66 (1997), 297-310. MR 1372009 (97c:65050)
  • 9. M. M. Spalević and M. S. Pranić, Error bounds of certain Gaussian quadrature formulae,
    J. Comput. Appl. Math. 234 (2010), 1049-1057. MR 2609559 (2011b:41047)
  • 10. M. M. Spalević, M. S. Pranić and A. V. Pejčev, Maximum of the modulus of kernels of Gaussian quadrature formulae for one class of Bernstein-Szegő weight functions, Appl. Math. Comput. 218 (2012), 5746-5756.
  • 11. F. Stenger, Bounds on the error of Gauss-type quadratures, Numer. Math. 8 (1966), 150-160. MR 0196936 (33:5120)
  • 12. B. von Sydow, Error estimates for Gaussian quadrature formulae, Numer. Math. 29 (1977), 59-64. MR 0471270 (57:11007)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 41A55, 65D30, 65D32

Retrieve articles in all journals with MSC (2010): 41A55, 65D30, 65D32

Additional Information

Miodrag M. Spalević
Affiliation: Department of Mathematics, University of Beograd, Faculty of Mechanical Engineering, Kraljice Marije 16, 11120 Belgrade 35, Serbia

Keywords: Maximum, modulus, kernel, Gaussian quadrature formula, Bernstein-Szegő weight function
Received by editor(s): September 22, 2010
Received by editor(s) in revised form: March 6, 2011
Published electronically: December 14, 2012
Additional Notes: The author was supported in part by the Serbian Ministry of Education and Science (Research Project: “Methods of numerical and nonlinear analysis with applications”, No. #174002)
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society