Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Accelerating Dougall's $ _5F_4$-sum and infinite series involving $ \pi$


Authors: Wenchang Chu and Wenlong Zhang
Journal: Math. Comp. 83 (2014), 475-512
MSC (2010): Primary 33D15; Secondary 05A15
DOI: https://doi.org/10.1090/S0025-5718-2013-02701-9
Published electronically: April 26, 2013
MathSciNet review: 3120601
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The modified Abel lemma on summation by parts is employed to investigate the partial sum of Dougall's $ _5H_5$-series. Several unusual transformation formulae into fast convergent series are established. They lead surprisingly to numerous infinite series identities involving $ \pi $, $ \zeta (3)$ and the Catalan constant, including several important ones discovered by Ramanujan (1914) and recently by Guillera.


References [Enhancements On Off] (What's this?)

  • 1. V. Adamchik and S. Wagon, $ \pi $: A 2000-year search changes direction, Mathematica in Education and Research 5:1 (1996), 11-19.
  • 2. T. Amdeberhan, Faster and faster convergent series for $ \zeta (3)$, Electron. J. Combin. 3 (1996), #R13. MR 1383739 (97b:11154)
  • 3. T. Amdeberhan and D. Zeilberger, Hypergeometric series acceleration via the WZ method, Electron. J. Combin. (Wilf Festschrift Volume) 4 (1997), #R3. MR 1444150 (99e:33018)
  • 4. R. Apéry, Irrationalité de $ \zeta (2)$ et $ \zeta (3)$, Journées Arithmétiques de Luminy: Astérisque 61 (1979), 11-13. MR 556662 (80j:10003)
  • 5. D. H. Bailey and J. M. Borwein, Experimental mathematics: examples, methods and implications, Notices Amer. Math. Soc. 52:5 (2005), 502-514. MR 2140093
  • 6. D. H. Bailey and J. M. Borwein, Computer-assisted discovery and proof, in ``Tapas in Experimental Mathematics'' (Victor Moll, ed.); Contemp. Math. (2008), 21-52. MR 2427663 (2010d:11154)
  • 7. D. H. Bailey, J. M. Borwein, P. B. Borwein and S. Plouffe, The quest for pi, Math. Intelligencer 19:1 (1997), 50-57. MR 1439159 (98b:01045)
  • 8. D. H. Bailey, J. M. Borwein, N. J. Calkin, R. Girgensohn, D. R. Luke and V. H. Moll, Experimental Mathematics in Action, Wellesley, MA: A K Peters, 2007. MR 2320374 (2007m:00003)
  • 9. D. Bailey, P. Borwein and S. Plouffe, On the rapid computation of various polylogarithmic constants, Math. Comp. 66:218 (1997), 903-913. MR 1415794 (98d:11165)
  • 10. W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.
  • 11. N. D. Baruah and B. C. Berndt, Ramanujan's Eisenstein series and new hypergeometric-like series for $ 1/\pi ^2$, J. Approx. Theory 160:1-2 (2009),135-153. MR 2558018 (2011a:11223)
  • 12. N. D. Baruah, B. C. Berndt and H. H. Chan, Ramanujan's series for $ 1/\pi $: a survey, Amer. Math. Monthly 116 (2009), 567-587. MR 2549375
  • 13. G. Bauer, Von den Coefficienten der Reihen von Kugelfunctionen einer Variabeln, J. Reine Angew. Math. 56 (1859), 101-121.
  • 14. L. Berggren, J. Borwein and P. Borwein, Pi: A Source Book, 2nd edition, Springer-Verlag (New York), 2000. MR 1746004 (2000k:11001)
  • 15. B. C. Berndt, Ramanujan's Notebooks (Part I), Springer-Verlag, New York, 1985; x+357pp. MR 781125 (86c:01062)
  • 16. B. C. Berndt, Ramanujan's Notebooks (Part IV), Springer-Verlag, New York, 1994; xii+451pp. MR 1261634 (95e:11028)
  • 17. B. C. Berndt, Ramanujan's Notebooks (Part V), Springer-Verlag, New York, 1998; xiv+624pp. MR 1486573 (99f:11024)
  • 18. B. C. Berndt, S. Bhargava and F. G. Garvan, Ramanujan's theories of elliptic functions to alternative bases, Trans. Amer. Math. Soc. 347:11 (1995), 4163-4244. MR 1311903 (97h:33034)
  • 19. G. Boros and V. H. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge, England; Cambridge University Press, 2004. MR 2070237 (2005b:00001)
  • 20. J. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century, Wellesley, MA: A K Peters, 2004. MR 2033012 (2005b:00012)
  • 21. J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, Wellesley, MA: A K Peters, 2004. MR 2051473 (2005h:11002)
  • 22. J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Wiley, New York, 1987. MR 877728 (89a:11134)
  • 23. J. M. Borwein and P. B. Borwein, Ramanujan and pi, Scientific American 258:2 (1988), 112-117.
  • 24. J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc. 323:2 (1991), 691-701. MR 1010408 (91e:33012)
  • 25. W. Chu, Abel's method on summation by parts and hypergeometric series, J. Difference Equ. Appl. 12:8 (2006), 783-798. MR 2248785 (2007g:33004)
  • 26. W. Chu, Bailey's very well-poised $ {_6\psi _6}$-series identity, J. Combin. Theory Ser. A 113:6 (2006), 966-979. MR 2244127 (2007g:33015)
  • 27. W. Chu, Abel's lemma on summation by parts and basic hypergeometric series, Adv. Appl. Math. 39:4 (2007), 490-514. MR 2356433 (2009c:33034)
  • 28. W. Chu, Asymptotic method for Dougall's bilateral hypergeometric sums, Bull. Sci. Math. 131:5 (2007), 457-468. MR 2337736 (2008h:33011)
  • 29. W. Chu and C. Z. Jia, Abel's method on summation by parts and theta hypergeometric series, J. Combin. Theory Ser. A 115:5 (2008), 815-844. MR 2417023 (2010d:33025)
  • 30. D. V. Chudnovsky and G. V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, in ``Ramanujan Revisited'', Proceedings of the Centenary Conference (Urbana-Champaign, 1987), eds. G. E. Andrews, B. C. Berndt, and R. A. Rankin; Academic Press: Boston (1988), 375-472. MR 938975 (89f:11099)
  • 31. J. Dougall, On Vandermonde's theorem and some more general expansions, Proc. Edinburgh Math. Soc. 25 (1907), 114-132.
  • 32. J. W. L. Glaisher, On series for $ 1/\pi $ and $ 1/\pi ^2$, Quart. J. Pure Appl. Math. 37 (1905), 173-198.
  • 33. R. W. Gosper, Decision procedure for indefinite hypergeometric summation, Proc. Nat. Acad. Sci. USA 75 (1978), 40-42. MR 0485674 (58:5497)
  • 34. J. Guillera, Some binomial series obtained by the WZ-method, Adv. Appl. Math. 29:4 (2002), 599-603. MR 1943367 (2004a:33039)
  • 35. J. Guillera, About a new kind of Ramanujan-type series, Experiment. Math. 12:4 (2003), 507-510. MR 2044000 (2005h:33016)
  • 36. J. Guillera, A new method to obtain series for $ 1/\pi $ and $ 1/\pi ^2$, Experiment. Math. 15:1 (2006), 83-89. MR 2229388 (2007f:11145)
  • 37. J. Guillera, A class of conjectured series representations for $ 1/\pi $, Experiment. Math. 15:4 (2006), 409-414. MR 2293592 (2007j:11181)
  • 38. J. Guillera, Generators of some Ramanujan formulas, Ramanujan J. 11:1 (2006), 41-48. MR 2220656 (2007c:33007)
  • 39. J. Guillera, Series de Ramanujan: Generalizaciones y Conjeturas, PhD thesis, Universidad de Zaragoza, 2007.
  • 40. J. Guillera, History of the formulas and algorithms for $ \pi $ (Spanish), Gac. R. Soc. Mat. Esp. 10:1 (2007), 159-178. MR 2331029
  • 41. J. Guillera, Hypergeometric identities for 10 extended Ramanujan-type series, Ramanujan J. 15:2 (2008), 219-234. MR 2377577 (2009m:33014)
  • 42. J. Guillera, A new Ramanujan-like series for $ 1/\pi ^2$, Ramanujan J. 26:3 (2011), 369-374. MR 2860693
  • 43. G. H. Hardy, The Indian mathematician Ramanujan, Amer. Math. Monthly 44:3 (1937), 137-155. MR 1523880
  • 44. G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work, Cambridge University Press, 1940; Reprinted by Chelsea, New York, 1978. MR 0004860 (3:71d)
  • 45. P. Levrie, Using Fourier-Legendre expansions to derive series for $ \frac 1{\pi }$ and $ \frac 1{\pi ^2}$, Ramanujan J. 22 (2010), 221-230. MR 2643705 (2011d:11294)
  • 46. M. Petkovšek, H. S. Wilf and D. Zeilberger, $ A = B$, A. K. Peters, Ltd., Wellesley, Mass., 1996. MR 1379802 (97j:05001)
  • 47. A. Van der Poorten, A proof that Euler missed...Apéry's proof of the irrationality of $ \zeta (3)$, (An informal report), Math. Intelligencer 1 (1978/1979), 195-203. MR 547748 (80i:10054)
  • 48. E. D. Rainville, Special Functions, Chelsea Publishing Company, Bronx, New York, 1971. MR 0393590 (52:14399)
  • 49. S. Ramanujan, Modular equations and approximations to $ \pi $, Quart. J. Pure Appl. Math. 45 (1914), 350-372.
  • 50. L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966. MR 0201688 (34:1570)
  • 51. K. R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, INC. Belmont, California, 1981. MR 604364 (82c:26002)
  • 52. H. S. Wilf, Accelerated series for universal constants by the WZ method, Discrete Math. Theor. Comput. Sci. 3 (1999), 189-192. MR 1713426 (2001m:33004)
  • 53. H. S. Wilf and D. Zeilberger, Rational functions certify combinatorial identities, J. Amer. Math. Soc. 3 (1990), 147-158. MR 1007910 (91a:05006)
  • 54. W. Zudilin, Ramanujan-type formulae for $ 1/\pi $: A second wind?, Modular forms and string duality, 179-188; Amer. Math. Soc., Providence, RI, 2008. MR 2454325 (2010f:11183)
  • 55. W. Zudilin, More Ramanujan-type formulas for $ 1/\pi \sp 2$ (Russian), Uspekhi Mat. Nauk 62:3 (2007), 211-212; Translation in Russian Math. Surveys 62:3 (2007), 634-636. MR 2355427 (2008i:11151)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 33D15, 05A15

Retrieve articles in all journals with MSC (2010): 33D15, 05A15


Additional Information

Wenchang Chu
Affiliation: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s Republic of China
Address at time of publication: Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano P. O. Box 193, 73100 Lecce, Italia
Email: chu.wenchang@unisalento.it

Wenlong Zhang
Affiliation: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s Republic of China
Email: wenlong.dlut@yahoo.com.cn

DOI: https://doi.org/10.1090/S0025-5718-2013-02701-9
Keywords: Abel's lemma on summation by parts, classical hypergeometric series, partial sum of Dougall's $_5H_5$-series, acceleration of convergent series, $\pi$-formulae of Ramanujan and Guillera
Received by editor(s): December 9, 2011
Received by editor(s) in revised form: March 27, 2012
Published electronically: April 26, 2013
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society