Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Second $ p$-descents on elliptic curves


Author: Brendan Creutz
Journal: Math. Comp. 83 (2014), 365-409
MSC (2010): Primary 11G05, 11Y50
DOI: https://doi.org/10.1090/S0025-5718-2013-02713-5
Published electronically: May 23, 2013
MathSciNet review: 3120595
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ p$ be a prime and $ C$ a genus one curve over a number field $ k$ representing an element of order dividing $ p$ in the Shafarevich-Tate group of its Jacobian. We describe an algorithm which computes the set of $ D$ in the Shafarevich-Tate group such that $ pD = C$ and obtains explicit models for these $ D$ as curves in projective space. This leads to a practical algorithm for performing explicit $ 9$-descents on elliptic curves over $ \mathbb{Q}$.


References [Enhancements On Off] (What's this?)

  • 1. B.J. Birch and H.P.F. Swinnerton-Dyer: Notes on elliptic curves. I., J. Reine Angew. Math. 212 (1963), 7-25; II., J. Reine Angew. Math. 218 (1965), 79-108. MR 0146143 (26:3669)
  • 2. W. Bosma, J. Cannon and C. Playoust: The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265. MR 1484478
  • 3. A. Bremner and J.W.S. Cassels: On the equation $ Y^2 = X(X^2+p)$, Math. Comp. 42 (1984), 257-264. MR 726003 (85f:11017)
  • 4. C. Breuil, B. Conrad, F. Diamond and R. Taylor: On the modularity of elliptic curves over $ \mathbb{Q}$: wild $ 3$-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843-939. MR 1839918 (2002d:11058)
  • 5. N. Bruin and M. Stoll: Two-cover descent on hyperelliptic curves, Math. Comp. 78 (2009), 2347-2370. MR 2521292 (2010e:11059)
  • 6. J.W.S. Cassels: Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung, J. Reine Angew. Math. 211 (1962), 95-112. MR 0163915 (29:1214)
  • 7. J.W.S. Cassels: Arithmetic on curves of genus 1. V. Two counter-examples, J. Lond. Math. Soc. 38 (1963), 244-248. MR 0148664 (26:6171)
  • 8. J.W.S. Cassels: Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer, J. Reine Angew. Math. 217 (1965), 180-199. MR 0179169 (31:3420)
  • 9. J.W.S. Cassels: Lectures on elliptic curves, LMS Student Texts 24, Cambridge University Press, Cambridge, 1991. MR 1144763 (92k:11058)
  • 10. J.W.S. Cassels: Second descents for elliptic curves, J. Reine Angew. Math. 494 (1998), 101-127. MR 1604468 (99d:11058)
  • 11. C. Chevalley and A. Weil: Un théorème d'arithmétique sur les courbes algébriques, C.R. Acad. Sci. Paris 195 (1932), 570-572.
  • 12. P.L. Clark: Period-index problems in WC-groups I: elliptic curves, J. Number Theory 114 (2005), 193-208. MR 2163913 (2006f:11059)
  • 13. P.L. Clark and S. Sharif: Period, index and potential $ \Russian {Sh}$, Algebra and Number Theory 4 (2010), No. 2, 151-174. MR 2592017 (2011b:11075)
  • 14. J. Coates and A. Wiles: On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), 223-251. MR 0463176 (57:3134)
  • 15. J. Cremona, T.A. Fisher and M. Stoll: Minimisation and reduction of $ 2$-, $ 3$- and $ 4$-coverings of elliptic curves, Algebra and Number Theory 4, (2010), No. 6, 763-820 MR 2728489 (2012c:11120)
  • 16. J.E. Cremona: Elliptic curves database, available online at http://www.warwick.ac.uk/staff/J.E.Cremona/ftp/data/INDEX.html
  • 17. J.E. Cremona, T.A. Fisher, C. O'Neil, D. Simon and M. Stoll: Explicit $ n$-descent on elliptic curves, I. Algebra, J. Reine Angew. Math. 615 (2008), 121-155; II. Geometry, J. Reine Angew. Math. 632 (2009), 63-84; III. Algorithms, (2011). MR 2384334 (2009g:11067)
  • 18. B. Creutz: Explicit second $ p$-descent on elliptic curves, Ph.D. thesis, Jacobs University (2010).
  • 19. B. Creutz and R.L. Miller: Second isogeny descents and the Birch and Swinnerton-Dyer conjectural formula, J. Algebra 372 (2012), 673-701. MR 2990032
  • 20. Z. Djabri, E.F. Schaefer and N.P. Smart: Computing the $ p$-Selmer group of an elliptic curve, Trans. Amer. Math. Soc. 352 (2000), 5583-5597. MR 1694286 (2001b:11047)
  • 21. T.A. Fisher: On $ 5$ and $ 7$ descents for elliptic curves, Ph.D. thesis, University of Cambridge (2000).
  • 22. T.A. Fisher: Some examples of $ 5$ and $ 7$ descent for elliptic curves over $ \mathbb{Q}$, J. Eur. Math. Soc. 3 (2001), 169-201. MR 1831874 (2002m:11045)
  • 23. T.A. Fisher: Finding rational points on elliptic curves using $ 6$-descent and $ 12$-descent, J. Algebra 320 (2008), 853-884. MR 2422319 (2009g:11068)
  • 24. V.A. Kolyvagin: Euler systems, The Grothendieck Festschrift, Vol. II, Progr. Math., 87, Birkhäuser Boston, (1990), 435-483. MR 1106906 (92g:11109)
  • 25. S. Lang: Abelian varieties, Springer, Berlin, 1983. MR 713430 (84g:14041)
  • 26. C.-E. Lind: Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins, Thesis, University of Uppsala, (1940). MR 0022563 (9:225c)
  • 27. J.R. Merriman, S. Siksek and N.P. Smart: Explicit $ 4$-descents on an elliptic curve, Acta Arith. 77 (1996), 385-404. MR 1414518 (97j:11027)
  • 28. R.L. Miller and M. Stoll: Explicit isogeny descent on elliptic curves, Math. Comp. 82 (2013), 513-529. MR 2983034
  • 29. L.J. Mordell: On the rational solutions of the indeterminate equations of the 3rd and 4th degrees, Proc. Camb. Phil. Soc. 21 (1922), 179-192.
  • 30. C. O'Neil: The period-index obstruction for elliptic curves, J. Number Theory 95 (2002), 329-339. MR 1924106 (2003f:11079)
  • 31. B. Poonen and E.F. Schaefer: Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. 488 (1997), 141-188. MR 1465369 (98k:11087)
  • 32. H. Reichardt: Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen, J. Reine Angew. Math. 184 (1942), 12-18. MR 0009381 (5:141c)
  • 33. K Rubin: The ``main conjectures'' of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25-68. MR 1079839 (92f:11151)
  • 34. E.F. Schaefer: Class groups and Selmer groups, J. Number Theory 56 (1996), 79-114. MR 1370197 (97e:11068)
  • 35. E.F. Schaefer: Computing a Selmer group of a Jacobian using functions on the curve, Math. Ann. 310 (1998), 447-471. MR 1612262 (99h:11063)
  • 36. E.F. Schaefer and M. Stoll: How to do a $ p$-descent on an elliptic curve, Trans. Amer. Math. Soc. 356 (2004), 1209-1231. MR 2021618 (2004g:11045)
  • 37. E.S. Selmer: The diophantine equation $ ax^3+by^3+cz^3=0$. Acta. Arith. 85 (1951), 203-362. MR 0041871 (13:13i)
  • 38. J-.P. Serre: Local fields, Grad. Texts in Math. 67, Springer, New York, 1979. MR 554237 (82e:12016)
  • 39. S. Siksek: Descent on Picard groups using functions on curves, Bull. Aust. Math. Soc. 66 (2002), 119-124. MR 1922613 (2003g:14041)
  • 40. J.H. Silverman: The arithmetic of elliptic curves, Springer Graduate Texts in Mathematics 106, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986. MR 817210 (87g:11070)
  • 41. D. Simon: Computing the rank of elliptic curves over number fields, LMS J. Comput. Math. 5 (2002), 7-17. MR 1916919 (2003g:11060)
  • 42. S. Stamminger: Explicit $ 8$-descent on elliptic curves, PhD thesis, International University Bremen (2005).
  • 43. M. Stoll: Implementing $ 2$-descent for Jacobians of hyperelliptic curves, Acta Arith. 98 (2001), 245-277. MR 1829626 (2002b:11089)
  • 44. A. Weil: Sur un théorème de Mordell, Bull. Sci. Math. 54 (1930), 182-191.
  • 45. A.J. Wiles: Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 2 (1995), no. 3, 443-551.
  • 46. T. Womack: Explicit descent on elliptic curves, PhD thesis, Nottingham (2003).
  • 47. Ju.G. Zarhin: Noncommutative cohomologies and Mumford groups, Math. Notes 15 (1974), 241-244. Translated from Mat. Zametki 15 (1974), 415-419. MR 0354612 (50:7090)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11G05, 11Y50

Retrieve articles in all journals with MSC (2010): 11G05, 11Y50


Additional Information

Brendan Creutz
Affiliation: School of Mathematics and Statistics, Carslaw Building F07, University of Sydney, NSW 2006, Australia
Email: brendan.creutz@sydney.edu.au

DOI: https://doi.org/10.1090/S0025-5718-2013-02713-5
Received by editor(s): August 27, 2011
Received by editor(s) in revised form: April 3, 2012, and April 23, 2012
Published electronically: May 23, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society