Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

The Fermat-type equations $ x^5 + y^5 = 2z^p$ or $ 3z^p$ solved through $ \mathbb{Q}$-curves


Authors: Luis Dieulefait and Nuno Freitas
Journal: Math. Comp. 83 (2014), 917-933
MSC (2010): Primary 11D41
DOI: https://doi.org/10.1090/S0025-5718-2013-02731-7
Published electronically: June 10, 2013
MathSciNet review: 3143698
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We solve the Diophantine equations $ x^5 + y^5 = dz^p$ with $ d=2, 3$ for a set of prime numbers of density $ 3/4$. The method consists of relating a possible solution to another Diophantine equation and solving the latter via a generalized modular technique. Indeed, we will apply a multi-Frey technique with two $ \mathbb{Q}$-curves along with a new technique for eliminating newforms.


References [Enhancements On Off] (What's this?)

  • 1. N. Billerey.
    Équations de Fermat de Type $ (5,5,p)$.
    Bull. Austral. Math. Soc., 76(2):161-194, 2007. MR 2353205 (2008i:11049)
  • 2. N. Billerey and L. Dieulefait.
    Solving Fermat-type equations $ x^{5} + y^{5} = d z^{p}$.
    Math. Comp., 79:535-544, 2010. MR 2552239 (2010k:11047)
  • 3. H. Carayol.
    Sur les représentation galoisiennes modulo $ l$ attachées aux formes modulaires.
    Duke Math. J., 59:785-801, 1989. MR 1046750 (91b:11058)
  • 4. I. Chen.
    On the equation $ a^2 + b^{2p} = c^5$.
    Acta Arith, 143:345-375, 2010. MR 2652585 (2012b:11051)
  • 5. I. Chen and M. Bennett.
    Multi-Frey $ \mathbb{Q}$-curves and the Diophantine equation $ a^2 + b^6 = c^p$.
    http://people.math.sfu.ca/~ichen/pub/BeCh2.pdf.
  • 6. L. Dieulefait and J. Jiménez.
    Solving Fermat-type equations $ x^4 + d y^2 = z^p$ via modular $ \mathbb{Q}$-curves over polyquadratic fields.
    J. Reine Angew. Math., 633:183-196, 2009.
  • 7. J. Ellenberg.
    Galois representations attached to $ \mathbb{Q}$-curves and the generalized Fermat equation $ {A}^4 + {B}^2 = {C}^p$.
    Amer. J. Math, 126:763-787, 2004. MR 2075481 (2005g:11089)
  • 8. J. S. Milne.
    On the arithmetic of abelian varieties.
    Invent. Math., 17:177-190, 1972. MR 0330174 (48:8512)
  • 9. I. Papadopoulos.
    Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle 2 et 3.
    Journal of Number Theory, 44:119-152, 1993. MR 1225948 (94g:11038)
  • 10. E. E. Pyle.
    Abelian varieties over $ \mathbb{Q}$ with large endomorphism algebras and their simple components over $ \bar {\mathbb{Q}}$.
    Progress in Mathematics, 224:189-234, 2004. MR 2058652 (2005f:11119)
  • 11. J. Quer.
    $ \mathbb{Q}$-curves and Abelian varieties of $ \mathit {GL}_{2}$-type.
    Proc. London Math. Soc., (3) 81:285-317, 2000. MR 1770611 (2001j:11040)
  • 12. J. Quer.
    Embedding problems over abelian groups and an application to elliptic curves.
    J. Algebra, 237:186-202, 2001. MR 1813898 (2002b:12008)
  • 13. K. Ribet.
    Abelian Varieties over $ \mathbb{Q}$ and modular forms.
    Progress in Mathematics, 224:241-261, 2004. MR 2058653 (2005k:11120)
  • 14. M. Mignotte Y. Bugeaud and S. Siksek.
    A multi-frey approach to some multi-parameter families of diophantine equations.
    Canad. J. Math. (3) 60:491-519, 2008. MR 2414954 (2009b:11059)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11D41

Retrieve articles in all journals with MSC (2010): 11D41


Additional Information

Luis Dieulefait
Affiliation: Department of Algebra and Geometry, University of Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain

Nuno Freitas
Affiliation: Department of Algebra and Geometry, University of Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain

DOI: https://doi.org/10.1090/S0025-5718-2013-02731-7
Received by editor(s): May 24, 2011
Received by editor(s) in revised form: November 26, 2011, December 15, 2011, January 13, 2012, March 6, 2012, and June 2, 2012
Published electronically: June 10, 2013
Additional Notes: The first author’s research was supported by project MICINN MTM2009-07024 from MECD, Spain; and ICREA Academia Research Prize.
The second author’s research was supported by a scholarship from Fundaçao para a Ciência e a Tecnologia, Portugal, reference no. $SFRH/BD/44283/2008$.
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society